Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10m in diameter and ∼2m thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/abe4c3DOI Listing

Publication Analysis

Top Keywords

self-assembling bioink
12
capillary-like structures
8
bioink
5
structures
5
interfacial self-assembling
4
bioink manufacturing
4
manufacturing capillary-like
4
structures tuneable
4
tuneable anisotropic
4
permeability
4

Similar Publications

There is a pressing need for new cell-laden, printable bioinks to mimic stiffer tissues such as cartilage, fibrotic tissue and bone. PEGDA monomers are bioinks that crosslink with light to form a viscoelastic solid, however, they lack cell adhesion properties. Here, we utilized a hybrid bioink by combining self-assembled peptide nanofibers with PEGDA for 3D printing lumens.

View Article and Find Full Text PDF

62Articular cartilage is a nonvascularized and poorly cellularized tissue with a low self-repair capacity. Therefore, damage to this tissue due to trauma or degenerative joint diseases such as osteoarthritis needs a high-end medical intervention. However, such interventions are costly, have limited healing capacity, and could impair patients' quality of life.

View Article and Find Full Text PDF

Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived.

View Article and Find Full Text PDF

160Three-dimensional (3D) bioprinting systems, which are the prominent tools for biofabrication, should evolve around the cutting-edge technologies of tissue engineering. This is the case with organoid technology, which requires a plethora of new materials to evolve, including extracellular matrices with specific mechanical and biochemical properties. For a bioprinting system to facilitate organoid growth, it must be able to recreate an organ-like environment within the 3D construct.

View Article and Find Full Text PDF

Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments.

View Article and Find Full Text PDF