98%
921
2 minutes
20
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10m in diameter and ∼2m thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/abe4c3 | DOI Listing |
OpenNano
January 2025
Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.
There is a pressing need for new cell-laden, printable bioinks to mimic stiffer tissues such as cartilage, fibrotic tissue and bone. PEGDA monomers are bioinks that crosslink with light to form a viscoelastic solid, however, they lack cell adhesion properties. Here, we utilized a hybrid bioink by combining self-assembled peptide nanofibers with PEGDA for 3D printing lumens.
View Article and Find Full Text PDFInt J Bioprint
March 2023
Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
62Articular cartilage is a nonvascularized and poorly cellularized tissue with a low self-repair capacity. Therefore, damage to this tissue due to trauma or degenerative joint diseases such as osteoarthritis needs a high-end medical intervention. However, such interventions are costly, have limited healing capacity, and could impair patients' quality of life.
View Article and Find Full Text PDFSmall
December 2023
Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived.
View Article and Find Full Text PDFInt J Bioprint
November 2022
Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
160Three-dimensional (3D) bioprinting systems, which are the prominent tools for biofabrication, should evolve around the cutting-edge technologies of tissue engineering. This is the case with organoid technology, which requires a plethora of new materials to evolve, including extracellular matrices with specific mechanical and biochemical properties. For a bioprinting system to facilitate organoid growth, it must be able to recreate an organ-like environment within the 3D construct.
View Article and Find Full Text PDFAdv Mater
June 2023
Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments.
View Article and Find Full Text PDF