Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of the present work is to prepare and evaluate ionically complexed Quinapyramine sulphate (QS) loaded lipid nanoparticles and its scale up using geometric similarity principle. Docusate sodium (DS), at a molar ratio of 1:2 of QS to DS, was used to prepare hydrophobic Quinapyramine sulphate-Docusate sodium (QS-DS) ionic complex. Based on the difference in total solubility parameter and polarity of QS-DS complex and different lipids, precirol was selected as a lipid for the preparation of lipidic nanoparticles. The particle size, zeta potential, and % entrapment efficiency (%EE) of QS-DS ionic complex loaded solid lipid nanoparticles (QS-DS-SLN) was found to be 250.10 ± 26.04 nm, -27.41 ± 4.18 mV and 81.26 ± 4.67% respectively. FTIR studies confirmed the formation of QS-DS ionic complex. DSC and XRD studies revealed the amorphous nature of QS in QS-DS-SLN. The spherical shape of nanoparticles was confirmed by scanning electron microscopy. QS-DS-SLN showed sustained release of QS for up to 60 h. No significant difference was observed in particle size, zeta potential, and % entrapment efficiency of pilot-scale batch prepared by using rotational speed of 700 rpm. In conclusion, ionic complexation approach can be used to increase % EE of charged drugs into lipid nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2021.01.033DOI Listing

Publication Analysis

Top Keywords

ionic complex
16
lipid nanoparticles
12
qs-ds ionic
12
quinapyramine sulphate-docusate
8
sulphate-docusate sodium
8
complex loaded
8
nanoparticles scale
8
scale geometric
8
geometric similarity
8
similarity principle
8

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.

View Article and Find Full Text PDF

Contrastive Study on Substitution of the Bulky Phosphanide [P(SiPr)] toward Heavier Tetrylenes.

Inorg Chem

September 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.

The super bulky sodium phosphanide, NaP(SiPr), was reacted with amidinatotetrylenes LECl (L = PhC(NBu), E = Si, Ge), resulting in the formation of phosphasilene LSi(SiPr) = PSiPr () and phosphanido germylene LGeP(SiPr) (), respectively. Investigation on the reactivity of and toward elemental sulfur was carried out, where a stepwise reaction yielding the silanethione LSi(=S)SiPr () and the silicon thioester analogue LSi(=S)SSiPr () was observed in the case of , while the treatment of with sulfur exclusively afforded the germanium thioester analogue. In addition, the reactions of with Fe(CO) and GeCl·1,4-dioxane led to the germylene-coordinated iron carbonyl and the asymmetric Ge-Ge-bonded complex, respectively, exhibiting the reactivity of the lone pair as well as a weak Ge-P bond.

View Article and Find Full Text PDF

Surfactants adsorb at interfaces and reduce the interfacial tension. In technical applications, they are typically used as complex mixtures rather than monodisperse systems. These mixtures often include ionic and non-ionic surfactants, with the non-ionic components comprising various monodisperse species.

View Article and Find Full Text PDF

High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).

View Article and Find Full Text PDF