Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic racetrack devices are promising candidates for next-generation memories. These spintronic shift-register devices are formed from perpendicularly magnetized ferromagnet/heavy metal thin-film systems. Data are encoded in domain wall magnetic bits that have a chiral Néel structure that is stabilized by an interfacial Dzyaloshinskii-Moriya interaction. The bits are manipulated by spin currents generated from electrical currents that are passed through the heavy metal layers. Increased efficiency of the current-induced domain wall motion is a prerequisite for commercially viable racetrack devices. Here, significantly increased efficiency with substantially lower threshold current densities and enhanced domain wall velocities is demonstrated by the introduction of atomically thin 4d and 5d metal "dusting" layers at the interface between the lower magnetic layer of the racetrack (here cobalt) and platinum. The greatest efficiency is found for dusting layers of palladium and rhodium, just one monolayer thick, for which the domain wall's velocity is increased by up to a factor of 3.5. Remarkably, when the heavy metal layer is formed from the dusting layer material alone, the efficiency is rather reduced by an order of magnitude. The results point to the critical role of interface engineering for the development of efficient racetrack memory devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468057PMC
http://dx.doi.org/10.1002/adma.202007991DOI Listing

Publication Analysis

Top Keywords

increased efficiency
12
domain wall
12
efficiency current-induced
8
interface engineering
8
racetrack devices
8
heavy metal
8
domain
5
increased
4
current-induced motion
4
motion chiral
4

Similar Publications

Background: The increasing amount of data routinely collected on ICUs poses a challenge for clinicians which is aggravated with data-heavy therapies like Continuous Kidney Replacement Therapy (CKRT). We developed the CKRT Supporting Software Prototype (CKRT-SSP), a clinical decision support system for use before, during and after CKRT. The aim of this user experience (UX) study was to prospectively evaluate CKRT-SSP in terms of usability, user experience, and workload in a simulated ICU setting.

View Article and Find Full Text PDF

Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.

Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.

View Article and Find Full Text PDF

Palytoxin-like compounds, including ovatoxins, are potent emerging toxins responsible for human respiratory poisonings following inhalation of contaminated marine aerosols. Periodic massive proliferations of the ovatoxin-producing organism (Ostreopsis cf. ovata) worldwide, particularly in the Mediterranean, have caused severe toxic outbreaks, drawing the attention of health authorities.

View Article and Find Full Text PDF

Low-cost and high-throughput RNA sequencing data for barley RILs achieved GP performance comparable to or better than traditional SNP array datasets when combined with parental whole-genome sequencing SNP data. The field of genomic selection (GS) is advancing rapidly on many fronts including the utilization of multi-omics datasets with the goal of increasing prediction ability and becoming an integral part of an increasing number of breeding programs ensuring future food security. In this study, we used RNA sequencing (RNA-Seq) data to perform genomic prediction (GP) on three related barley RIL populations.

View Article and Find Full Text PDF

Flexible suction-coagulation probe restores dexterity in robot-assisted surgery: bench-to-bedside evaluation.

Surg Endosc

September 2025

Department of Next Generation Endoscopic Intervention (Project ENGINE), Graduate School of Medicine, The University of Osaka, Suite 0802, BioSystems Bldg., 1-3, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Objective: Rigid suction-coagulation probes constrain the wrist-like articulation that is central to robotic surgery. We therefore designed a 5-mm single-use flexible suction ball coagulator (flex-SBC) with a modified core design to restore dexterity and assessed its mechanical performance and early clinical feasibility, including the effect of the common robotic gripping strategies on suction flow.

Methods: Preclinical.

View Article and Find Full Text PDF