A 3D printed human upper respiratory tract model for particulate deposition profiling.

Int J Pharm

School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia. Electronic address:

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pulmonary route is the main route of drug delivery for patients with asthma and chronic obstructive pulmonary diseases, offering several advantages over the oral route. Determining the amount of drug deposited onto various parts of the respiratory tract allows for a good correlation to clinical efficacy of inhalation drug devices. However, current in vitro cascade impactors measure only the aerodynamic particle size distribution, which does not truly represent the in vivo deposition pattern in human respiratory tract. In this study, a human upper respiratory tract model was fabricated using a 3D printer and subsequently characterized for its dimensional accuracy, surface finishing and air leaking. The effects of using a spacer and/or various airflow rates were also investigated. To assess this in vitro model, the deposition pattern of a model drug, namely, salbutamol sulphate, was tested. The resultant deposition pattern of salbutamol sulphate from a metered dose inhaler at 15 L per minute with the spacer, showed no significant difference from that of a published radiological in vivo study performed in adult humans. In addition, it was also found that the deposition pattern of salbutamol at 35 L per minute was comparable to the results of another published study in human. This in vitro model, showing reasonable in vitro-in vivo correlation, may provide opportunities for personalized medicine in special populations or disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120307DOI Listing

Publication Analysis

Top Keywords

respiratory tract
16
deposition pattern
16
human upper
8
upper respiratory
8
tract model
8
study human
8
vitro model
8
salbutamol sulphate
8
pattern salbutamol
8
model
5

Similar Publications

Palytoxin-like compounds, including ovatoxins, are potent emerging toxins responsible for human respiratory poisonings following inhalation of contaminated marine aerosols. Periodic massive proliferations of the ovatoxin-producing organism (Ostreopsis cf. ovata) worldwide, particularly in the Mediterranean, have caused severe toxic outbreaks, drawing the attention of health authorities.

View Article and Find Full Text PDF

Introduction: Breathlessness is a common cause of hospital admission globally and is associated with high mortality, particularly in low-income countries. In sub-Saharan Africa, there is a paucity of data on breathlessness, with existing data focused on individual diseases. There is a need for patient-centred approaches to understand interactions between multiple conditions to address population needs and inform health system responses.

View Article and Find Full Text PDF

Exercise-induced respiratory symptoms limit physical activity and sport performance in adolescents. Etiologies include exercise-induced bronchoconstriction, laryngeal obstruction, dysfunctional breathing, and in rarer cases, large airway obstruction and cardiac pathologies. Accurate diagnosis requires assessment during exercise that elicits the symptoms patients experience in the field.

View Article and Find Full Text PDF

Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.

View Article and Find Full Text PDF

The clinical manifestations of atypical hemolytic uremic syndrome (aHUS) vary depending on the genetic background. A 19-year-old man with the C3 p.Asp1115Asn variant experienced 2 episodes of recurrent aHUS following respiratory tract infections caused by influenza and COVID-19.

View Article and Find Full Text PDF