Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Mutations in SCN5A that decrease Na current underlie arrhythmia syndromes such as the Brugada syndrome (BrS). in humans has two splice variants, one lacking a glutamine at position 1077 (Q1077del) and one containing Q1077. We investigated the effect of splice variant background on loss-of-function and rescue for R1512W, a mutation reported to cause BrS. : We made the mutation in both variants and expressed them in HEK-293 cells for voltage-clamp study. After 24 hours of transfection, the current expression level of R1512W was reduced by ~50% in both Q1077del and Q1077 compared to the wild-type (WT) channel, respectively. The activation and inactivation midpoint were not different between WT and mutant channels in both splice variant backgrounds. However, slower time constants of recovery and enhanced intermediate inactivation were observed for R1512W/Q1077 compared with WT-Q1077, while the recovery and intermediate inactivation parameters of R1512W/Q1077del were similar to WT-Q1077del. Furthermore, both mexiletine and the common polymorphism H558R restored peak sodium current () amplitude of the mutant channel by increasing the cell surface expression of SCN5A. : These findings provide further evidence that the splice variant affects the molecular phenotype with implications for the clinical phenotype, and they provide insight into the expression defect mechanisms and potential treatment in BrS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872018PMC
http://dx.doi.org/10.1080/19336950.2021.1875645DOI Listing

Publication Analysis

Top Keywords

splice variant
16
expression defect
8
variant background
8
mexiletine common
8
common polymorphism
8
polymorphism h558r
8
q1077del q1077
8
intermediate inactivation
8
splice
5
expression
4

Similar Publications

Fukuyama congenital muscular dystrophy: Clinical features and therapeutic advances.

Brain Dev

September 2025

Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan.

Fukuyama congenital muscular dystrophy (FCMD, a severe form of muscular dystrophy characterized by brain structural anomalies and ocular complications due to neuronal migration disorders, is notably limited mainly to Japan. Ninety percent of patients are unable to walk throughout their lives and die before the age of 20 due to respiratory failure and cardiomyopathy. At present, there is no cure.

View Article and Find Full Text PDF

Mitochondrial Complex V Deficiency Caused by a Homozygous Splice Variant in ATP5PO.

Am J Med Genet A

September 2025

Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

Most complex V subunits are nuclear encoded and so far, were not found in association with recognized Mendelian disorders. ATP5PO is a candidate gene for complex V mitochondrial disease. It encodes the oligomycin sensitivity-conferring protein (OSCP), an essential component of the "stalk" region that links the F1 and F0 domains of the ATP synthase complex.

View Article and Find Full Text PDF

Clinical and molecular insights into Wiedemann-Rautenstrauch syndrome: A case report and genetic analysis of the c.2707G > A variant in the POLR3A gene.

Exp Gerontol

September 2025

Grupo de Investigación en Neurosciencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.

Wiedemann-Rautenstrauch syndrome (WRS) is a rare neonatal progeroid disorder primarily associated with pathogenic variants in POLR3A. However, the pathogenicity of certain variants remains unclear. Here, we report a WRS case carrying the POLR3A c.

View Article and Find Full Text PDF

variants drive chromosomal fission and accelerate speciation in zokors.

Sci Adv

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China.

Chromosomal fissions and fusions are common, yet the molecular mechanisms and implications in speciation remain poorly understood. Here, we confirm a fission event in one zokor species through multiple-omics and functional analyses. We traced this event to a mutation in a splicing enhancer of the DNA repair gene in the fission-bearing species, which caused exon skipping and produced a truncated protein that disrupted DNA repair.

View Article and Find Full Text PDF

Background: The D-negative phenotype demonstrates significant ethnic diversity in its molecular background. This study reports the identification of a novel RHD*01 N allele resulting from a splicing site variation observed in a Chinese blood donor.

Study Design And Methods: The D blood group phenotype was determined using serological techniques, including the saline method, and the indirect antiglobulin test (IAT) performed by both tube and microcolumn gel methods.

View Article and Find Full Text PDF