Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841308PMC
http://dx.doi.org/10.3389/fcimb.2020.615450DOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
12
intracellular bacterial
8
factors pathways
8
persister formation
8
bacterial
6
persistence
4
persistence intracellular
4
bacterial pathogens-with
4
pathogens-with focus
4
focus metabolic
4

Similar Publications

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

Exploring tumour-microbe interactions: in vitro and in vivo modelling of Streptococcus bovis-induced colorectal carcinogenesis.

Mol Biol Rep

September 2025

Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.

Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.

View Article and Find Full Text PDF

Population-level bistability in quorum sensing.

mBio

September 2025

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.

View Article and Find Full Text PDF

Unlabelled: There is a considerable interest in the association between and colorectal cancer (CRC). Recently, it was suggested that this association is valid only for a distinct clade of ( C2) and that strains belonging to another clade ( C1) are only associated with the oral cavity. It was further suggested that this made C1 a natural comparator when looking for candidate genes associated with the pathogenicity of C2.

View Article and Find Full Text PDF

The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.

View Article and Find Full Text PDF