Publications by authors named "Werner Goebel"

is a Gram-negative bacterium that utilizes multiple host-derived substrates to ensure its intracellular survival. In this study, human fallopian tube (HFT) cells, and human macrophages polarized toward a pro-inflammatory (M1-like) or anti-inflammatory (M2-like) state were infected with and cocultivated in the presence of [U-C]glucose. Samples were analyzed by dual isotopologue profiling with a focus on specific bacterial and host-specific metabolites.

View Article and Find Full Text PDF

Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle.

View Article and Find Full Text PDF

Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves.

View Article and Find Full Text PDF

Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H.

View Article and Find Full Text PDF

Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed.

View Article and Find Full Text PDF

The universe of Molecular Microbial Pathogenesis is filled with many female and male stars. But there are two particularly bright shining supernovae-like stars: the late Stanley Falkow and the very lively and creative Pascale Cossart. These two outstanding luminaries, surrounded by numerous planets, do not only belong to different scientific generations but their splendor also comes from very different scientific concepts.

View Article and Find Full Text PDF

Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection.

View Article and Find Full Text PDF

Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps.

View Article and Find Full Text PDF

Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco-2 cells with C-marked glucose, glutamine, malate or a mix of amino acids as tracers.

View Article and Find Full Text PDF

Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids.

View Article and Find Full Text PDF

Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle.

View Article and Find Full Text PDF

Background: Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined.

Methods: Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection.

View Article and Find Full Text PDF

Intracellular bacterial pathogens (IBPs) are dependent on various nutrients provided by the host cells. Different strategies may therefore be necessary to adapt the intracellular metabolism of IBPs to the host cells. The specific carbon sources, the catabolic pathways participating in their degradation, and the biosynthetic performances of IBPs are still poorly understood.

View Article and Find Full Text PDF

The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft.

View Article and Find Full Text PDF

The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13)C-labelled glucose or glutamine as carbon tracers.

View Article and Find Full Text PDF

Background: Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L.

View Article and Find Full Text PDF

Most bacteria pathogenic for humans have closely related nonpathogenic counterparts that live as saprophytes, commensals or even symbionts (mutualists) in similar or different habitats. The knowledge of how these bacteria adapt their metabolism to the preferred habitats is critical for our understanding of pathogenesis, commensalism and symbiosis, and - in the case of bacterial pathogens - could help to identify targets for new antimicrobial agents. The focus of this review is on the metabolic potentials and adaptations of three different groups of human extra- and intracellular bacterial pathogens and their nonpathogenic relatives.

View Article and Find Full Text PDF

Background: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface.

Results: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody.

View Article and Find Full Text PDF

Background: The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level.

Results: A comprehensive library of L.

View Article and Find Full Text PDF

Cytolysin A (known as ClyA, HlyE, and SheA) is a cytolytic pore-forming protein toxin found in several Escherichia coli and Salmonella enterica strains. The structure of its water-soluble monomeric form and that of dodecameric ClyA pores is known, but the mechanisms of ClyA export from bacterial cells and of pore assembly are only partially understood. Here we used site-directed mutagenesis to study the importance of different regions of the E.

View Article and Find Full Text PDF

Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2).

View Article and Find Full Text PDF

New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.

View Article and Find Full Text PDF

Background: In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems.

Methodology/principal Findings: We could show that Listeria monocytogenes and other Listeria species contain genes/gene products with high homology to the maltodextrin ABC transporter and utilization system of B.

View Article and Find Full Text PDF

A tumor promoting role of macrophages has been described for a transgenic murine breast cancer model. In this model tumor-associated macrophages (TAMs) represent a major component of the leukocytic infiltrate and are associated with tumor progression. Shigella flexneri is a bacterial pathogen known to specificly induce apotosis in macrophages.

View Article and Find Full Text PDF

The human pathogen L. monocytogenes is a facultatively intracellular bacterium that survives and replicates in the cytosol of many mammalian cells. The listerial metabolism, especially under intracellular conditions, is still poorly understood.

View Article and Find Full Text PDF