Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There seems to be a general consensus among researchers that acute aerobic exercise (exercise hereafter) improves mood, but the neural mechanisms which drive these effects are far from being clear. The current study investigated the cortical connectivity patterns that underlie changes in mood after exercise. Twenty male adults underwent three different experimental protocols that were carefully controlled in terms of underlying metabolism and were administered in a randomized order: moderate-intensity continuous exercise, high-intensity interval exercise, and seated rest condition. Before and after each experimental protocol, we collected data on the participants' mood using the UMACL questionnaire and recorded their resting-state EEG. We focused on the effective connectivity patterns exerted by the dorso-lateral prefrontal cortex (dlPFC) over the temporal region (TMP), as these are important cortical structures involved in shaping mood. The cortical connectivity patterns in the resting-state EEG were evaluated using the directed transfer function (DTF), which is an autoregressive effective connectivity method. The results showed that both moderate-intensity exercise and high-intensity interval exercise improved participants' self-reported mood. Crucially, this improvement was accompanied by stronger influences of dlPFC over TMP. The observed changes in the effective connectivity patterns between dlPFC and TMP might help to better understand the effects of exercise on mood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpsycho.2021.01.016DOI Listing

Publication Analysis

Top Keywords

connectivity patterns
16
cortical connectivity
12
effective connectivity
12
exercise
9
acute aerobic
8
aerobic exercise
8
structures involved
8
involved shaping
8
mood
8
shaping mood
8

Similar Publications

Feasibility, Acceptability, and Preliminary Outcomes of a Mobile Adaptation of a Relational Savoring Intervention to Prevent Loneliness in College Students: Mixed Methods Pilot Study.

JMIR Form Res

September 2025

Department of Psychological Science, School of Social Ecology, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA, 92697, United States, 1 203-887-8857.

Background: Rates of loneliness have risen sharply since the onset of the COVID-19 pandemic, largely due to disruptions in social relationships and daily routines, with college students experiencing some of the greatest increases. While prevention programs targeting loneliness have been developed, their success has been limited. One promising approach may lie in enhancing the quality of existing relationships rather than simply increasing social interactions during periods of acute loneliness.

View Article and Find Full Text PDF

The chick embryo ventricular cardiomyocyte model provides students easy access to experiments involving fundamental features of cardiac cell physiology and pharmacology. Using standard physiology teaching laboratories and basic cell culture equipment, spontaneously beating colonies of electrically-connected cardiomyocytes can be obtained by the students themselves. Students learn, aseptic techniques and cell culture alongside experiments illustrating, at the simplest level of experimentation, how beating rate can be altered physiologically or pharmacologically.

View Article and Find Full Text PDF

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

A GFP Complementation-based Dual-expression System for Assessing Cell-Cell Contact Mediated by Cytonemes in Live Drosophila Wing Imaginal Discs.

J Vis Exp

August 2025

Institut de recherches cliniques de Montréal (IRCM); Programmes de biologie moléculaire, Université de Montréal; Département de Médecine, Université de Montréal;

Embryonic tissue growth and patterning are largely controlled by signals exchanged locally between cell populations within the tissues themselves. Cytonemes are a type of signaling filopodia first identified in Drosophila that connect and mediate exchange between signal-producing and signal-receiving cells. In the developing Drosophila wing imaginal disc, cytonemes are involved in signal exchange between distinct populations of cells within the disc proper (DP) epithelium, which will form the adult wing, as well as between DP cells and cells in adjacent disc-associated tissues.

View Article and Find Full Text PDF

Predicting team dynamics from personality traits remains a fundamental challenge for the psychological sciences and team-based organizations. Understanding how team composition shapes team processes can significantly advance team-based research along with providing practical guidelines for team staffing and training. Although the input-process-output model has been a useful theoretical framework for studying these connections, the complex nature of team member interactions demands a more dynamic approach.

View Article and Find Full Text PDF