Article Synopsis

  • Macrophages exhibit diverse protein expressions, which are difficult to study at the single-cell level due to challenges in protein analysis.
  • SCoPE2, a new technique developed to enhance quantitative accuracy and throughput while streamlining sample preparation, successfully analyzed proteins in monocytes and macrophages, revealing a variety of proteome states without cytokine influence.
  • The findings indicate that even in uniform conditions, macrophages exhibit protein diversity related to their activation states, paving the way for future single-cell protein studies and deeper insights into gene regulation.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis.

Results: To overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantifies over 3042 proteins in 1490 single monocytes and macrophages in 10 days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. Parallel measurements of transcripts by 10× Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus, SCoPE2 supports quantification with improved count statistics. This allowed exploring regulatory interactions, such as interactions between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53.

Conclusions: Even in a homogeneous environment, macrophage proteomes are heterogeneous. This heterogeneity correlates to the inflammatory axis of classically and alternatively activated macrophages. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839219PMC
http://dx.doi.org/10.1186/s13059-021-02267-5DOI Listing

Publication Analysis

Top Keywords

macrophage heterogeneity
8
quantitative single-cell
8
absence polarizing
8
polarizing cytokines
8
single cells
8
single-cell
4
single-cell proteomic
4
proteomic transcriptomic
4
transcriptomic analysis
4
analysis macrophage
4

Similar Publications

Characterization of the heterogeneity in oxidative stress and transcriptional programs within the in vivo microenvironment of ulcerative colitis.

Mol Immunol

September 2025

Department of Gastroenterology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, First Affiliated Hospital of Lishui University, Lishui, Zhejiang 323000, China. Electronic address:

Objective: Oxidative stress exerts an essential role in the pathogenesis of ulcerative colitis (UC). This study aims to unveil the heterogeneity in oxidative stress among immune cell subpopulations in UC.

Methods: Human colon epithelial cells were exposed to 100 ng/mL LPS to stimulate UC, which were administrated with antioxidants 500 mM butylated hydroxyanisole or 20 μM N-acetylcysteine.

View Article and Find Full Text PDF

Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF

Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial-stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies.

View Article and Find Full Text PDF