Evaluation of Appropriate Hysteresis Model for Nonlinear Dynamic Analysis of Existing Reinforced Concrete Moment Frames.

Materials (Basel)

Division of Architectural and Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Korea.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Various seismic analysis methods are being used to predict the response of structures to earthquakes. Although nonlinear dynamic analysis (NDA) is considered an ideal method to represent the most realistic behavior of a structure among these various methods, correct results can be derived only when the analysis model is carefully developed by a knowledgeable person. It is particularly important to properly implement the behavior characteristics depending on the reversed cyclic load in the NDA of a building made of reinforced concrete (RC) moment frames. This study evaluated the hysteresis model suitable for NDA of existing RC moment frames, and 45 analysis models were reviewed, in which the pivot, concrete, and Takeda hysteresis models were applied differently to beams and columns. The pivot model was evaluated as the most reliable hysteresis model for each structural member by comparing and analyzing not only the responses of the entire frame but also the responses of column and beam members focusing on energy dissipation. However, this model can have practical limitations in that the parameters associated with the reinforcement detailing and applied loads need to be defined in detail. The analysis model applying Takeda to the beam, which predicted the average response at a reliable level compared to the reference model, was identified as a practical alternative when it is difficult to apply the pivot model to all frame members.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865220PMC
http://dx.doi.org/10.3390/ma14030524DOI Listing

Publication Analysis

Top Keywords

hysteresis model
12
moment frames
12
model
9
nonlinear dynamic
8
dynamic analysis
8
reinforced concrete
8
concrete moment
8
analysis model
8
pivot model
8
analysis
6

Similar Publications

The water activity of milk powders is a critical parameter for predicting quality and safety, but some retailers in the supply chain may be limited to measuring moisture content, which can be easier and more affordable. Moisture sorption isotherms relate moisture content to the corresponding water activity. In this study, moisture adsorption and desorption isotherms were determined for nonfat dry milk (NFDM) and milk protein concentrate (MPC-85) powder samples at ambient and elevated temperatures via the modernized dynamic dewpoint isotherm (DDI) method.

View Article and Find Full Text PDF

The glass transition is dynamically heterogeneous with non-Arrhenius, nonexponential, and nonlinear features, and those parameters are mutually correlated in most cases. This study systematically investigates these interrelated features through thermodynamic analysis of polyvinylpyrrolidone (PVP)/salt complexes, employing enthalpy relaxation parameters, specifically the heat capacity jump (Δ) at and enthalpy hysteresis (Δ). Notably, the introduction of ionic interactions induces simultaneous reductions in dynamic fragility (), nonexponential parameter (β), and nonlinear parameter (), thereby disrupting their previously established empirical correlations.

View Article and Find Full Text PDF

High-power giant magnetostrictive underwater transducers are integral to underwater active sonar detection systems due to their high energy density, rapid dynamic response, and significant output force. However, these transducers exhibit complex nonlinear dynamic hysteresis behavior, which is influenced by the coupling of electric, magnetic, mechanical, and acoustic fields. This complexity presents considerable challenges in accurately characterizing their output properties.

View Article and Find Full Text PDF

Quantifying polycrystallinity effects on skyrmion dynamics and device performance.

Phys Chem Chem Phys

September 2025

Department of Electrical and Electronics Engineering, Koç University, Sariyer, Istanbul 34450, Turkey.

Skyrmion-based devices promise energy-efficient spintronic functionalities, but polycrystalline magnetic films can degrade performance by inducing skyrmion pinning. Here, we use micromagnetic modeling to quantify the impact of polycrystallinity-induced variability in key material parameters such as saturation magnetization, Dzyaloshinskii-Moriya interaction, and uniaxial anisotropy on skyrmion stability, dynamics, and hysteresis loops in Co/Pt films and device geometries. We demonstrate that variations exceeding 5% in these parameters across grains significantly increase the likelihood of pinning, with the effects depending on both grain size and distribution.

View Article and Find Full Text PDF

Programmable ultrasonic modulation of viscoelasticity in polymer-based elastomers: Experiments and constitutive modeling.

Ultrason Sonochem

August 2025

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China. Electronic address:

One of the central challenges in soft matter mechanics is to achieve reversible and programmable modulation of viscoelasticity in polymer-based elastomers at small strains, which is crucial for precision engineering and advanced functional devices. Conventional approaches are constrained by irreversibility and lack of dynamic control. In this study, it is demonstrated that ultrasonic vibration (19-22 kHz) enables dynamic, reversible, and tunable modulation of the mechanical response in such materials.

View Article and Find Full Text PDF