Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The glass transition is dynamically heterogeneous with non-Arrhenius, nonexponential, and nonlinear features, and those parameters are mutually correlated in most cases. This study systematically investigates these interrelated features through thermodynamic analysis of polyvinylpyrrolidone (PVP)/salt complexes, employing enthalpy relaxation parameters, specifically the heat capacity jump (Δ) at and enthalpy hysteresis (Δ). Notably, the introduction of ionic interactions induces simultaneous reductions in dynamic fragility (), nonexponential parameter (β), and nonlinear parameter (), thereby disrupting their previously established empirical correlations. Through the framework of the Adam-Gibbs model, we demonstrate that the concurrent decrease in and primarily originates from thermodynamic factors, as evidenced by enhanced Δ. The observed anomaly where exceeds β suggests that physical inhomogeneities in retardation time distributions contribute significantly to the nonexponential nature of cooperative motions. This phenomenon likely stems from the relatively lower elementary activation energy associated with reversible ionic interactions, as supported by increased Δ and Δ. These findings not only reinforce the crucial connection between thermodynamic properties and dynamic fragility but also establish a novel thermodynamic framework for interpreting heterogeneous dynamics in polymeric glass formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5c04873DOI Listing

Publication Analysis

Top Keywords

ionic interactions
12
dynamic fragility
8
unusual nonlinearity
4
nonlinearity nonexponentiality
4
nonexponentiality glass-forming
4
glass-forming polymers
4
polymers governed
4
governed ionic
4
interactions glass
4
glass transition
4

Similar Publications

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF

Dual-functional hydrochar via hydrothermal carbonization for norfloxacin removal: Fractal adsorption kinetics and mechanism elucidation.

Sci Total Environ

September 2025

Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.

Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF