98%
921
2 minutes
20
Salinity stress is common for plants growing in coastal wetlands. The addition of biochar in the soil may alleviate the negative effect of salinity through its unique physicochemical properties. To test this, we conducted a greenhouse experiment where the cosmopolitan wetland plant Phragmites australis was subjected to four salinity treatments (0, 5, 10 and 15‰) and three biochar treatments (no biochar addition, with biochar addition and with biochar-compost addition, both biochar and compost were made from P. australis) in a factorial design. Both biochar addition and biochar-compost addition to the substrate enhanced belowground mass of P. australis, application of biochar-compost significantly increased total mass by 35.5% and net photosynthesis rate of P. australis by 51.4%. Both biochar addition and biochar-compost addition significantly increased soil organic carbon content by 62.9% and 31.7%, respectively, but decreased soil ammonium nitrogen content. In the saline soil, application of the mixture of biochar-compost had a strong, and positive effect on the growth of P. australis, compared to biochar alone. Therefore, incorporation of biochar and compost might be an appropriate approach to improve the productivity of P. australis growing in coastal wetlands, where soil salinity is a common environmental stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145166 | DOI Listing |
BMC Chem
February 2025
College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
Carbon sequestration by application of organic materials and biochar in soil is an important strategy to increase soil organic carbon (SOC), but the stability of SOC, particularly humic substances (HS) vary with the types of organic material. In this study, cotton straw and its derived compost and biochar were added with equivalent carbon content to soil and incubated for 180 days. The structural characteristics of humic acid (HA), fulvic acid (FA) and humin (Hu) were investigated using solid-state C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFPlants (Basel)
February 2025
MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Chemistry and Biochemistry Department, School of Sciences and Technology, University of Évora, Colégio Luís António Verney, Ap. 94, 7006-554 Évora, Portugal.
The effect of fertilization strategies involving biochar, compost, and inorganic N on growth and phytochemical accumulation in turnips was studied in a greenhouse pot experiment. The experiment was carried out with six fertilizer treatments: unfertilized soil (US), compost (120 g/pot) + biochar (20 g/pot) (C + B), compost (120 g/pot) + 0.5 g N/pot (C + 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Faculty of Management, AGH University of Krakow, 30-067, Kraków, Poland.
Food production is one of the most important sources of greenhouse gas (GHG) emissions, both in primary production and in processing and the logistics chain. The most problematic and risky is the optimization of environmental effects in the stage of primary production. This is due to the significant influence of factors related to climate and soil that are difficult to predict.
View Article and Find Full Text PDFJ Hazard Mater
July 2024
Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Effi
Nowadays, numerous environmental risk substances in soil worldwide have exhibited serious germination inhibition of crop seeds, posing a threat to food supply and security. This review provides a comprehensive summary and discussion of the inhibitory effects of environmental risk substances on seed germination, encompassing heavy metals, microplastics, petroleum hydrocarbons, salinity, phenols, essential oil, agricultural waste, antibiotics, etc. The impacts of species, concentrations, and particle sizes of various environmental risk substances are critically investigated.
View Article and Find Full Text PDFSci Rep
April 2024
Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan, 030031, China.
Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production.
View Article and Find Full Text PDF