Biochar-compost addition benefits Phragmites australis growth and soil property in coastal wetlands.

Sci Total Environ

Institute of Wetland Ecology & Clone Ecology; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salinity stress is common for plants growing in coastal wetlands. The addition of biochar in the soil may alleviate the negative effect of salinity through its unique physicochemical properties. To test this, we conducted a greenhouse experiment where the cosmopolitan wetland plant Phragmites australis was subjected to four salinity treatments (0, 5, 10 and 15‰) and three biochar treatments (no biochar addition, with biochar addition and with biochar-compost addition, both biochar and compost were made from P. australis) in a factorial design. Both biochar addition and biochar-compost addition to the substrate enhanced belowground mass of P. australis, application of biochar-compost significantly increased total mass by 35.5% and net photosynthesis rate of P. australis by 51.4%. Both biochar addition and biochar-compost addition significantly increased soil organic carbon content by 62.9% and 31.7%, respectively, but decreased soil ammonium nitrogen content. In the saline soil, application of the mixture of biochar-compost had a strong, and positive effect on the growth of P. australis, compared to biochar alone. Therefore, incorporation of biochar and compost might be an appropriate approach to improve the productivity of P. australis growing in coastal wetlands, where soil salinity is a common environmental stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145166DOI Listing

Publication Analysis

Top Keywords

biochar-compost addition
16
biochar addition
16
coastal wetlands
12
addition biochar
12
addition biochar-compost
12
biochar
9
phragmites australis
8
growing coastal
8
addition
8
biochar compost
8

Similar Publications

Carbon sequestration by application of organic materials and biochar in soil is an important strategy to increase soil organic carbon (SOC), but the stability of SOC, particularly humic substances (HS) vary with the types of organic material. In this study, cotton straw and its derived compost and biochar were added with equivalent carbon content to soil and incubated for 180 days. The structural characteristics of humic acid (HA), fulvic acid (FA) and humin (Hu) were investigated using solid-state C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Exploring Sustainable Fertilization Strategies Involving Biochar, Compost, and Inorganic Nitrogen: Impact on Nutrient Uptake, Yield, Phytochemical Accumulation, and Antioxidant Responses in Turnips.

Plants (Basel)

February 2025

MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Chemistry and Biochemistry Department, School of Sciences and Technology, University of Évora, Colégio Luís António Verney, Ap. 94, 7006-554 Évora, Portugal.

The effect of fertilization strategies involving biochar, compost, and inorganic N on growth and phytochemical accumulation in turnips was studied in a greenhouse pot experiment. The experiment was carried out with six fertilizer treatments: unfertilized soil (US), compost (120 g/pot) + biochar (20 g/pot) (C + B), compost (120 g/pot) + 0.5 g N/pot (C + 0.

View Article and Find Full Text PDF

Food production is one of the most important sources of greenhouse gas (GHG) emissions, both in primary production and in processing and the logistics chain. The most problematic and risky is the optimization of environmental effects in the stage of primary production. This is due to the significant influence of factors related to climate and soil that are difficult to predict.

View Article and Find Full Text PDF

Environmental risk substances in soil on seed germination: Chemical species, inhibition performance, and mechanisms.

J Hazard Mater

July 2024

Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Effi

Nowadays, numerous environmental risk substances in soil worldwide have exhibited serious germination inhibition of crop seeds, posing a threat to food supply and security. This review provides a comprehensive summary and discussion of the inhibitory effects of environmental risk substances on seed germination, encompassing heavy metals, microplastics, petroleum hydrocarbons, salinity, phenols, essential oil, agricultural waste, antibiotics, etc. The impacts of species, concentrations, and particle sizes of various environmental risk substances are critically investigated.

View Article and Find Full Text PDF

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production.

View Article and Find Full Text PDF