Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822920PMC
http://dx.doi.org/10.1038/s42003-020-01623-8DOI Listing

Publication Analysis

Top Keywords

chromosomal scale
8
wasp genome
8
parasitism success
8
scale assembly
4
assembly parasitic
4
parasitic wasp
4
genome reveals
4
reveals symbiotic
4
symbiotic virus
4
virus colonization
4

Similar Publications

Background: Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when extrapolated to different populations, especially children.

View Article and Find Full Text PDF

Understanding the relationship between macro- and microevolutionary processes and their delimitation remains a challenge. This review focuses on the role of chromosomal rearrangements in plant population differentiation and lineage diversification resulting in speciation, helping bridge the gap between macro- and microevolution through chromosomal evolution. We focus on angiosperms, a group that comprises the majority of extant plant species diversity and exhibits the largest chromosomal and genomic variations.

View Article and Find Full Text PDF

Haplotype-resolved genomes of reveal nuclear differentiation, TE-mediated variation, and saprotrophic potential.

IMA Fungus

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.

is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .

View Article and Find Full Text PDF

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF

Long-range viscosity of the plasma membrane of a living cell measured by a shear-driven flow method.

Biophys J

September 2025

Department of Chromosome Science, National Institute of Genetics, Yata 1111, Mishima, 411-8540, Japan; Genetics Program, Sokendai, Yata 1111, Mishima, 411-8540, Japan.

The viscosity of the plasma membrane in living cells is a crucial biophysical parameter that regulates cellular functions. We categorize the plasma membrane viscosity into short-range and long-range viscosities based on the spatial scale of the cellular processes they influence. Short-range viscosity originates from the Brownian motion of membrane molecules, i.

View Article and Find Full Text PDF