Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging.

Results: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3' shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation.

Conclusion: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818915PMC
http://dx.doi.org/10.1186/s12864-021-07381-zDOI Listing

Publication Analysis

Top Keywords

freeze-thaw cycles
16
rna sequencing
8
freeze-thaw
8
impact repeated
8
repeated freeze-thaw
8
ribosomal rna
8
rna depleted
8
differential expression
8
library preparation
8
rna
6

Similar Publications

Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.

View Article and Find Full Text PDF

Study on the high viscosity and gel-prone properties of glycine-amidated pectin and its regulatory role on the freeze-thaw stability of sea bass surimi.

Food Chem

September 2025

The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China; Food Science Research Institute of Zhangzhou, Minnan Normal University, Zhangzhou 363000, China. Electronic address:

An ultra-low temperature (-5 °C) enzymatic method was employed to prepare glycine-amidated pectin (Gly-Pe) and evaluate its physicochemical properties and freeze-thaw protection mechanism in surimi. After glycine grafting (12.77 %), amide bonds disrupted pectin's crystalline structure and enhanced molecular chain flexibility.

View Article and Find Full Text PDF

Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.

View Article and Find Full Text PDF

Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.

View Article and Find Full Text PDF

Significant enhancement of photoproduced reactive intermediates in liquid-like region in frozen surface water for micropollutant degradation.

Water Res

September 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).

View Article and Find Full Text PDF