98%
921
2 minutes
20
Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-β-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-β-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831945 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13010117 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:
Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj
For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0905, USA.
Pores scale flows through contractions and expansions are relevant in geoengineering, microfluidics and material processing These flows experience shearing and extensional kinematics near constrictions, where polymer solutions may demonstrate instabilities that arise from the fluid's nonlinear rheological characteristics even in creeping flows. The relative effect of shearing and extension can be controlled by the flow geometry. Following our earlier reports on the constriction length (M.
View Article and Find Full Text PDFBiorheology
September 2025
Department of Biomedical Engineering, University of Cincinnati, Veterans Affairs Medical Center, Cincinnati, OH, USA.
BackgroundThe viscosity of (BAF) influences the hemodynamics during testing of medical devices and implants in cardiovascular systems mimicking physiologic flow conditions. BAF, typically composed of water, glycerin, and Xanthan gum, is used to simulate blood's non-Newtonian shear-thinning behavior. Additionally, BAF may include microsphere particles for flow visualization in Laser Doppler Velocimetry (LDV) experiments, though their impact on viscosity remained an under-investigated area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
Xanthan gum (XG) has performed far better than other polysaccharides for industrial purposes, e.g., food, pharmaceutical, and cosmetic applications, due to its outstanding thickening effect, pseudoplastic rheological properties, and non-toxicity.
View Article and Find Full Text PDF