Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers.

Physiol Genomics

Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skeletal muscles are comprised of two major types of myofibers, fast and slow. It is hypothesized that once myofiber type is determined, muscle fiber-type specificity is maintained by an epigenetic mechanism, however, this remains poorly understood. To address this, we conducted a comprehensive CpG methylation analysis with a reduced representation of bisulfite sequencing (RRBS). Using GFP- mouse, we visually distinguished and separately pooled slow-type and -negative fast-type fibers for analyses. A total of 31,967 and 26,274 CpGs were hypermethylated by ≥10% difference in the fast- and slow-type fibers, respectively. Notably, the number of promoter-hypermethylated genes with downregulated expression in the slow-type fibers was 3.5 times higher than that in the fast-type fibers. Gene bodies of the fast-type-specific myofibrillar genes , , , , and were hypermethylated in the slow-type fibers, whereas those of the slow-type-specific genes , , and were hypermethylated in the fast-type fibers. Each of the instances of gene hypermethylation was associated with the respective downregulated expression. In particular, a relationship between CpG methylation sites and the transcription variant distribution of was observed, suggesting a regulation of alternative promoter usage by gene body CpG methylation. An association of hypermethylation with the regulation of gene expression was also observed in the transcription factors and . These results suggest not only a myofiber type-specific regulation of gene expression and alternative promoter usage by gene body CpG methylation but also a dominant effect of promoter-hypermethylation on the gene expressions in slow myofibers.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00099.2020DOI Listing

Publication Analysis

Top Keywords

cpg methylation
16
gene expression
12
fast-type fibers
12
slow-type fibers
12
gene
8
fast- slow-type
8
downregulated expression
8
genes hypermethylated
8
alternative promoter
8
promoter usage
8

Similar Publications

Human opsin restoration by histone methylation using methyltransferase fusion protein SETD7-dCas9.

Mol Ther Nucleic Acids

September 2025

Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

Epigenetic modulation enables precise gene regulation without altering DNA sequences. While histone acetylation has been widely utilized for gene activation, the therapeutic potential of histone methylation remains underexplored. In this study, we developed a new epigenetic activator by fusing the histone methyltransferase SETD7 to deactivated Cas9 (dCas9).

View Article and Find Full Text PDF

Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Background: Acute hyperinsulinemia may directly affect blood cells. In this study a hyperinsulinemic-euglycemic clamp (HEC) and multiomics methods were used to explore the epigenetic regulation by hyperinsulinemia in blood cells.

Methods: To assess short-term changes in DNA methylation (within 2 hours), blood samples were collected from five non-diabetic adults before and after HEC.

View Article and Find Full Text PDF

Epigenetic modulation of BARD1 to enhance anti-VEGF therapy.

Cell Rep Med

August 2025

Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:

Despite the clinical use of anti-vascular endothelial growth factor (VEGF) antibodies (AVAs) in cancer therapy, resistance frequently develops, leading to disease progression. To address this, we identify a previously unknown role for breast cancer type 1 susceptibility protein (BRCA1)-associated RING domain 1 (BARD1) in modulating AVA sensitivity. Epigenetic modulation-via global and targeted DNA methylation-reveals BARD1 as a key regulator of angiogenesis.

View Article and Find Full Text PDF