Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photopolymerization has been widely used for remote inducible hydrogelation with excellent spatiotemporal control. Recently, photothermal hydrogelation using near-infrared (NIR) light and photothermal agents has been developed showing remote hydrogelation ability with good biocompatibility and tissue penetration. However, the use of plasmonic nanoparticles (e.g., gold nanorods (GNRs)) still causes problems in reaction efficiency because hydrogelation is effective only when the wavelength of light is matched with the optical properties of the GNRs. Here, we demonstrated wavelength-independent photothermal hydrogelation using PEGylated graphene oxide (GO-PEG) that displays excellent heat generation from lights of a wide range of wavelengths. A sufficient increase in the temperature of the GO-PEG solution and the induction of thermal gelation of polyethylene diacrylate (PEGDA) by irradiation of various light sources (532, 785, and 980 nm) were demonstrated. Also, the GO-PEG-based photothermal hydrogelation of PEGDA was successfully employed for remote transdermal gel formation in vivo with 785 and 980 nm lasers. This wavelength-independent photothermal hydrogelation system will be useful for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c00161DOI Listing

Publication Analysis

Top Keywords

photothermal hydrogelation
16
graphene oxide
8
hydrogelation
8
light sources
8
wavelength-independent photothermal
8
785 980
8
photothermal
6
photothermal polymerization
4
polymerization graphene
4
oxide robust
4

Similar Publications

The emergence of drug-resistant bacteria due to excessive antibiotic use has drawn increasing attention to inorganic nanoparticles for their broad-spectrum antibacterial properties. Here, a "green" strategy for the simultaneous in situ synthesis of silver nanoparticles (AgNPs) during the photocrosslinking process of casein hydrogels is described. The in situ photoactivated biomineralization of AgNPs provides noticeable stability and antibacterial activity, with high photothermal effect during a sequential near-infrared laser activation.

View Article and Find Full Text PDF

Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.

View Article and Find Full Text PDF

Chitosan-Based Photothermal Hydrogel with Rapid Bacterial Capture for Enhanced Disinfection.

Int J Biol Macromol

September 2025

Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China. Electronic address:

Constructing a novel antibacterial platform is of great significance for inhibiting bacterial infections. In this work, we developed a composite hydrogel (CS/PPy/PDA hydrogel) by incorporating photothermal material polypyrrole (PPy), chitosan (CS) and polydopamine (PDA) into poly acrylamide (PAAM) hydrogel network. First, CS/PPy/PDA hydrogel could capture bacteria through strong electrostatic interactions, enhancing the contact between hydrogels and bacteria.

View Article and Find Full Text PDF

Nanocellulose-assisted construction of conductive gradient hydrogel for remote actuated and self-sensing soft actuator.

Carbohydr Polym

November 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N

Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.

View Article and Find Full Text PDF

A host/guest assembled hyaluronic acid-based supramolecular hydrogel with NIR-steered degradation capacity for enhanced tumor therapy through programmable drug release.

Carbohydr Polym

November 2025

Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un

Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.

View Article and Find Full Text PDF