Temperature-Responsive On-Off Control over Water Evaporation Achieved via Sweat-Gland-Mimetic Composites.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Responsive cooling materials that mimic sweat glands have gained popularity because they are efficient and do not require artificial energy sources. Temperature-responsive hydrogels sweat above their volume transition temperature through the release of water and exhibit excellent cooling ability. However, thus far, practical applications have not been possible because the water in these materials cannot be preserved in cool environments. To address this issue, this paper presents a simple composite of poly(-isopropylacrylamide) and polydimethylsiloxane that offers excellent on-off control over water evaporation and can be used repeatedly; the proposed composite features an evaporation rate of 2.97 g/h above the lower critical solution temperature (LCST) and 0.08 g/h below the LCST. This 35.7-fold change in the water evaporation rate is comparable to that in mammalian sweat glands. The responsive on-off control relies on the structures of the composite and the dry layers formed on the surface of the composite in cool environments. The proposed material effectively regulates water evaporation and offers a novel, low-cost cooling strategy suitable for numerous applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c16292DOI Listing

Publication Analysis

Top Keywords

water evaporation
16
on-off control
12
control water
8
sweat glands
8
cool environments
8
evaporation rate
8
water
6
evaporation
5
temperature-responsive on-off
4
evaporation achieved
4

Similar Publications

The aim of the study was to evaluate the toxic metals (TMs) pollution, bioaccumulation and its potential health risk via consumption of different vegetables irrigated by different water sources released from industrial estates of Khyber Pakhtunkhwa. Water (fresh and waste), soil and vegetables samples were collected in triplicates and acid digested. Digestion of samples were followed by evaporation and filtration and then assessed for TMs via atomic absorption spectrophotometer.

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF

Cesium ions (Cs) are notable radioactive contaminants hazardous to humans and the environment. Among various remediation methods, adsorption is a practical way to remove Cs from water, and Prussian blue (PB) is well-known as an efficient Cs adsorbent. Although various PB derivatives have been proposed to treat Cs-contaminated water, soil remediation is still challenging due to the limited mobility of pollutants in soil.

View Article and Find Full Text PDF

The natural tracers δO and δH are essential for tracing hydrological processes by identifying water sources, tracking evaporation loss and floodwater dynamics to enhance water management and flood mitigation strategies. This study employed this approach in the ephemeral, endorheic Cuvelai-Etosha Basin (CEB), spanning northern Namibia and southern Angola, to determine its viability in capturing spatial and temporal hydrological patterns, their timing and interactions during a medium flood condition (2017), and contrasted with a drought year (2014). During the 2017 wet season 219 grab surface water samples were collected from ephemeral waterbodies in four sampling campaigns (February, March, April and May) in addition to a single campaign in May 2014 (63 samples).

View Article and Find Full Text PDF

The evaporation of surfactant-laden sessile droplets has widespread applications in both natural and technological contexts. This study explores the evaporation of droplets containing a nonionic surfactant (tristyrylphenol ethoxylates (EOT)), an anionic surfactant (sodium benzenesulfonate with alkyl chain lengths of C-C (NaDDBS)), and their mixtures at / mole ratios of 0.01, 0.

View Article and Find Full Text PDF