Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Ketamine is a novel fast-acting antidepressant. Acute ketamine treatment can reverse microstructure deficits and normalize functional alterations in the brain, but little is known about the impacts of ketamine on brain volumes in individuals with depression.

Methods: We used 3 T magnetic resonance imaging (MRI) and tensorbased morphological methods to investigate the regional volume differences for 29 healthy control (HC) subjects and 21 subjects with major depressive disorder (MDD), including 10 subjects with comorbid post-traumatic stress disorder (PTSD). All the subjects participated in MRI scanning before and 24 h post intravenous ketamine infusion. The effects of acute ketamine administration on HC, MDD, and MDD/PTSD groups were examined separately by whole-brain voxel-wise t-tests.

Results: Our data showed smaller volume of inferior frontal gyrus (IFG, opercular part) in MDD and MDD/PTSD subjects compared to HC, and a significant correlation between opercular IFG volume and depressive severity in MDD subjects only. Ketamine administration normalized the structural alterations of opercular IFG in both MDD and MDD/PTSD groups, and significantly improved depressive and PTSD symptoms. Twenty-four hours after a single ketamine infusion, there were two clusters of voxels with volume changes in MDD subjects, including significantly increased volumes of opercular IFG. No significant structural alterations were found in the MDD/PTSD or HC groups.

Conclusion: These findings provide direct evidence that acute ketamine administration can normalize structural alterations associated with depression and highlight the importance of IFG in the guidance of future therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758564PMC
http://dx.doi.org/10.1177/2470547020980681DOI Listing

Publication Analysis

Top Keywords

structural alterations
16
acute ketamine
12
ketamine administration
12
mdd mdd/ptsd
12
opercular ifg
12
ketamine
9
inferior frontal
8
frontal gyrus
8
ketamine infusion
8
mdd/ptsd groups
8

Similar Publications

Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.

Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.

View Article and Find Full Text PDF

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are chemical modifications that occur on specific amino acid residues after protein biosynthesis, which can affect protein function by altering protein structure, localization and activity, thus expanding protein diversity. Extensive research has demonstrated that PTMs can regulate various metabolic processes, such as glucose and lipid metabolism, as well as immune modulation in tumor cells, thereby promoting tumor initiation, progression, and metastasis. In this article, we systematically review a class of emerging PTMs whose roles in tumor metabolism and immune regulation have gradually been recognized in recent years, including six types: lactylation, palmitoylation, SUMOylation, succinylation, crotonylation, and myristoylation.

View Article and Find Full Text PDF