Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of in Drought and Salt Tolerance.

Front Plant Sci

Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

genes, which form a plant-specific transcription factor family, play an important role in plant growth and development and stress responses. However, the functions of genes in soybean () remain largely unknown. Here, 117 genes distributed on 20 chromosomes were identified in the soybean genome and were classified into 11 subfamilies. Of the soybean genes, 80.34% did not have intron insertions, and 54 pairs of genes accounted for 88.52% of duplication events (61 pairs). RNA-seq analysis demonstrated that most were expressed in 14 different soybean tissues examined and responded to multiple abiotic stresses. Results from quantitative real-time PCR analysis of six selected suggested that was significantly upregulated under drought and salt stress conditions and abscisic acid and brassinosteroid treatment; therefore, this gene was selected for further study. Subcellular localization analysis revealed that the GmGRAS37 protein was located in the plasma membrane, nucleus, and cytosol. Soybean hairy roots overexpressing had improved resistance to drought and salt stresses. In addition, these roots showed increased transcript levels of several drought- and salt-related genes. The results of this study provide the basis for comprehensive analysis of genes and insight into the abiotic stress response mechanism in soybean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793673PMC
http://dx.doi.org/10.3389/fpls.2020.604690DOI Listing

Publication Analysis

Top Keywords

drought salt
12
genes
7
soybean
6
genome-wide analysis
4
analysis gras
4
gras gene
4
gene family
4
family functional
4
functional identification
4
identification drought
4

Similar Publications

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Trees harbor large stores of nonstructural carbohydrates, some of which are quite old (> 10 yr), yet we know little of how these older stores may be used for woody growth. Crucially, the use of old carbohydrates during cellulose biosynthesis could confound climate reconstructions that rely on tree ring stable isotope ratios. We analyzed tree-ring cellulose ΔC and δC in earlywood of two pine species from montane forests in western North America using tree rings produced during the radiocarbon bomb pulse (1966-1980).

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF

The WRKY Transcription Factor SbWRKY51 Positively Regulates Salt Tolerance of Sorghum.

Plant Sci

September 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:

Salt stress is one of the main abiotic stresses that affects plant growth and development, as well as crop yield. A large number of studies have reported that the WRKY gene family plays significant roles in the plant responses to salt stress, but the underlying mechanisms remain largely unknown, and research on WRKY proteins in sorghum is also limited. In this study, we identified the sorghum gene SbWRKY51, which encodes a group II WRKY transcription factor.

View Article and Find Full Text PDF