Reciprocating-flowing on-a-chip enables ultra-fast immunobinding for multiplexed rapid ELISA detection of SARS-CoV-2 antibody.

Biosens Bioelectron

Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The worldwide epidemic of novel coronavirus disease (COVID-19) has led to a strong demand for highly efficient immunobinding to achieve rapid and accurate on-site detection of SARS-CoV-2 antibodies. However, hour-scale time-consumption is usually required to ensure the adequacy of immunobinding on expensive large instruments in hospitals, and the common false negative or positive results often occur in rapid on-site immunoassay (e.g. immunochromatography). We solved this dilemma by presenting a reciprocating-flowing immunobinding (RF-immunobinding) strategy. RF-immunobinding enabled the antibodies in fluid contacting with the corresponding immobilized antigens on substrate repeatedly during continuous reciprocating-flowing, to achieve adequate immunobinding within 60 s. This strategy was further developed into an immunoassay method for the serological detection of 13 suspected COVID-19 patients. We obtained a 100% true negative and true positive rate and a limit of quantification (LOQ) of 4.14 pg/mL. Our strategy also can be a potential support for other areas related to immunorecognition, such as proteomics, immunopharmacology and immunohistochemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834412PMC
http://dx.doi.org/10.1016/j.bios.2020.112920DOI Listing

Publication Analysis

Top Keywords

detection sars-cov-2
8
immunobinding
5
reciprocating-flowing on-a-chip
4
on-a-chip enables
4
enables ultra-fast
4
ultra-fast immunobinding
4
immunobinding multiplexed
4
multiplexed rapid
4
rapid elisa
4
elisa detection
4

Similar Publications

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Plasma samples obtained approximately 3 ( = 100) and 12 months ( = 78) after acute SARS-CoV-2 infection were tested for S1, spike, and N antigens. There were no significant differences in plasma proteins or single-cell protein expression levels on immune cells between those with and without plasma antigen detected.

View Article and Find Full Text PDF

The future European Health Data Space (EHDS), a network for secure cross-border data use, could be beneficial for public health initiatives. The HealthData@EU pilot project evaluated possibilities of secondary data use based on five use cases and established a pilot IT infrastructure. This article reports overarching experiences from two public health use cases and the IT development.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

While affinity purification-mass spectrometry (AP-MS) has significantly advanced protein-protein interaction (PPI) studies, its limitations in detecting weak, transient, and membrane-associated interactions remain. To address these challenges, we introduced a proteomic method termed affinity purification coupled proximity labeling-mass spectrometry (APPLE-MS), which combines the high specificity of Twin-Strep tag enrichment with PafA-mediated proximity labeling. This method achieves improved sensitivity while maintaining high specificity (4.

View Article and Find Full Text PDF