98%
921
2 minutes
20
This study aimed to investigate the fungal diversity and its temporal and spatial dynamics in the rhizosphere soil of healthy cotton by high-throughput sequencing. We studied species richness, composition, and distribution of cotton rhizosphere fungal community with respect to location (Alaer, Kuerle, Tumushuke, Hami, Shihezi, Wusu, and Jinghe) and plant growth period (seedling stage, bud stage, flowering stage, and boll-opening stage) using the methods of PCR-based high-throughput sequencing and real-time quantitative PCR. A total of 1,838,454 fungal nuclear ribosomal internal transcribed spacer region sequences (rRNA ITS) were obtained from all cotton plants sampled at different growth stages in the seven locations in Xinjiang. The most abundant fungal group in the cotton rhizosphere was the Ascomycota (78.72%), followed by the Zygomycota (9.56%) and Basidiomycota (2.77%). These sequences revealed an enormous number of operational taxonomic units (OTUs) in cotton (1802 unique OTUs), with 67-464 OTUs in a single cotton sample, at a 3% threshold and a sequencing depth of 30,000 sequences. We identified 33 classes and 389 genera from the resulting 1,800,714 sequences. Sordariomycetes was the most frequent class in all samples, followed by Leotiomycetes and Eurotiomycetes. There were some differences in OTUs among different growth stages, but the differences were not significant, with 382 OTUs (14.66%) being common to each of the stages. A marked difference in the diversity of fungi in the rhizosphere soil of cotton was evident among the different locations, with the highest number of OTUs being detected in Jinghe (1084 OTUs) and clusters of OTUs representative of northern and eastern Xinjiang being detected. There were significantly more tags of Mortierella in Jinghe and Wusu than in the other sampling sites. The dynamics of the rhizosphere fungal communities were influenced by sampling sites. To the best of our knowledge, the current study is the first application of PCR-based Illumina to characterize and compare the fungal biodiversity in multiple rhizosphere soil samples from cotton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-020-01646-y | DOI Listing |
Environ Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDFFront Microbiol
August 2025
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China.
As the world's largest producer of kiwifruit, China faces significant yield and quality losses due to the widespread occurrence of kiwifruit root rot. To explore alternative biological control strategies for kiwifruit root rot, this study isolated 11 fungal isolates from diseased kiwifruit roots and identified as the primary pathogen. Additionally, a biocontrol strain, C3, was isolated from the rhizosphere of healthy kiwifruit and shown to significantly inhibit pathogen growth.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-, Rennes 35000, France.
The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad
Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:
Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.
View Article and Find Full Text PDF