98%
921
2 minutes
20
Multiple-object tracking studies consistently reveal attentive tracking limits of approximately three to five items. How do factors such as visual grouping and ensemble perception impact these capacity limits? Which heuristics lead to the perception of multiple objects as a group? This work investigates the role of grouping on multiple-object tracking ability, and more specifically, in identifying the heuristics that lead to the formation and perception of ensembles within dynamic contexts. First, we show that group tracking limits are approximately four groups of objects and are independent of the number of items that compose the groups. Further, we show that group tracking performance declines as inter-object spacing increases. We also demonstrate the role of group rigidity in tracking performance in that disruptions to common fate negatively impact ensemble tracking ability. The findings from this work contribute to our overall understanding of the perception of dynamic groups of objects. They characterize the properties that determine the formation and perception of dynamic object ensembles. In addition, they inform development and design decisions considering cognitive limitations involving tracking groups of objects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049938 | PMC |
http://dx.doi.org/10.3758/s13414-020-02219-4 | DOI Listing |
Front Cell Neurosci
August 2025
Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.
Objective: To assess the safety and tolerability of intravitreal injection of human retinal progenitor cells (RPCs) at multiple dose levels in adults with non-syndromic retinitis pigmentosa (RP).
Design: A prospective, multicenter, open-label, single-arm, Phase I/IIa safety study of RPCs in adults with RP ( = 28). Two patient cohorts were studied: Cohort 1: BCVA no better than 20/200 and no worse than Hand Motions, and Cohort 2: BCVA no better than 20/40 and no worse than 20/200).
J Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Intelligence (MI) Research Group, London South Bank University, 103 Borough Road, London, London, SE1 0AA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing.
View Article and Find Full Text PDFAnat Rec (Hoboken)
September 2025
Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Rodents' ability to encode the whisking phase has been extensively documented through neuronal recordings from ascending sensory pathways. Yet, while indicating that reafference originates from the mechanoreceptors, the mechanistic underpinnings of the whisking phase encoding within the follicle remain unclear. Here we present anatomical, histological, and biomechanical evidence for the presence of a distinctive elastic segment (ES) within the basal part of the whisker shaft inside the follicle.
View Article and Find Full Text PDFAquac Nutr
August 2025
Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component in regulating oxidative stress. Sulforaphane (SFN) is a natural antioxidant and gene agonist that can increase the antioxidant capacity of the organism and reduce oxidative stress. However, research on the repair of oxidative stress damage by SFN in aquatic animals remains extremely scarce.
View Article and Find Full Text PDF