98%
921
2 minutes
20
Soil acidity is one of the vital factors that influence organic matter transformation and accumulation. Long-term studies on the mechanisms of biochar's effects on soil organic matter (SOM) accumulation dependent on pH values are lacking. A four-year column experiment was conducted without and with biochar application (11.3 Mg ha crop) in acid (pH = 5.24) and alkaline (pH = 8.22) soils under paddy rice/wheat annual rotation. To explore organic matter accumulation mechanisms, SOM pools were extracted (physical-chemical fractionation) and their chemical structures were analyzed using advanced solid-state C nuclear magnetic resonance (C NMR) techniques. Biochar increased the proportion of aromatic carbon (C) in all SOM pools, which led to an increased C content in two soils. The elevated pH after biochar application (∆pH = 1.03) increased Fe (III) oxidation and precipitation, and therefore, stimulated amorphous Fe content in 53-μm pool in the acid soil. This change increased the interaction between organic compounds and Fe (hydr)oxide, which impeded bacteria access to substrates, and in turn, promoted SOM accumulation in the acid soil. Conversely, low Fe (hydr)oxide availability resulted in the decomposition of the labile substrates (di-O-alkyl C, NCH, and OCH) in mobile humic acids via microbial respiration, thereby lowering the effect of SOM sequestration in the alkaline soil. Our study revealed that organic matter accumulation after biochar amendment is not solely dependent on the chemical recalcitrance of biochar, but also is controlled by the transformation of Fe (hydr)oxide in SOM pools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.144300 | DOI Listing |
Environ Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Environmental Science, Stockholm University, Stockholm, Sweden.
Organic matter stored in Arctic permafrost represents a key component of the carbon cycle, yet its reactivity across heterogeneous continent-scale permafrost regions remains poorly understood. Here, we leverage the four shelf seas of the Eurasian Arctic as integrative receptor systems to evaluate terrestrial organic matter reactivity, assessed by examining organic carbon preservation as a function of C-constrained cross-shelf transport time. Our findings reveal higher reactivity of terrestrial organic matter released to the Laptev Sea and the eastern East Siberian Sea, lower reactivity in the western East Siberian Sea, and no deducible degradation in the Kara Sea.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.
Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFAnim Sci J
September 2025
Department of Zotechnics and Animal Nutrition, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey.
The aim of this experiment was to determine the effects of walnut (Juglans regia L.) green husk (WGH) supplemented to ration on rumen fermentation by in vitro gas production technique. WGH was supplemented at different ratios (0%, 2%, 4%, 6%, 8%, and 10%) to the total mixture ration formed from 80%/20% roughage/concentrate feed.
View Article and Find Full Text PDF