Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The NA23_RS08100 gene of AW-1 encodes a keratin-degrading β-aspartyl peptidase (BAP) that is highly expressed under starvation conditions. Herein, we expressed the gene in , purified the recombinant enzyme to homogeneity, and investigated its function. The 318 kDa recombinant BAP enzyme exhibited maximal activity at 80°C and pH 7.0 in the presence of Zn. Size-exclusion chromatography revealed that the native enzyme is an octamer comprising a tetramer of dimers; this was further supported by determination of its crystal structure at 2.6 Å resolution. Consistently, the structure of BAP revealed three additional salt bridges in each dimer, involving 12 ionic interactions that might contribute to its high thermostability. In addition, the co-crystal structure containing the substrate analog -carbobenzoxy-β-Asp-Leu at 2.7 Å resolution revealed binuclear Zn-mediated substrate binding, suggesting that BAP is a hyperthermophilic type-I IadA, in accordance with sequence-based phylogenetic analysis. Indeed, complementation of a Leu auxotrophic mutant strain (Δ and Δ) with BAP enabled the mutant strain to grow on isoAsp-Leu peptides. Remarkably, LC-MS/MS analysis of soluble keratin hydrolysates revealed that BAP not only cleaves the C-terminus of isoAsp residues but also has a relatively broad substrate specificity toward α-peptide bonds. Moreover, heat shock-induced protein aggregates retarded bacterial growth, but expression of BAP alleviated the growth defect by degrading damaged proteins. Taken together, these results suggest that the viability of hyperthermophiles under stressful conditions may rely on the activity of BAP within cellular protein repair systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774594PMC
http://dx.doi.org/10.3389/fmolb.2020.600634DOI Listing

Publication Analysis

Top Keywords

protein repair
8
bap
8
mutant strain
8
functional characterization
4
characterization primordial
4
primordial protein
4
enzyme
4
repair enzyme
4
enzyme m38
4
m38 metallo-peptidase
4

Similar Publications

New strategies to enhance the efficacy of PD-1/PD-L1 inhibitors in treating microsatellite stable colorectal cancer.

Future Oncol

September 2025

Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.

Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF

Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.

View Article and Find Full Text PDF

Lactylation as a metabolic-epigenetic nexus in epilepsy: Mechanisms and therapeutic implications.

Neurobiol Dis

September 2025

Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou, PR China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi 563000, Guizhou, PR China; The Collaborative Innovation Center of Tis

Lactylation is a novel post-translational modification (PTM) mediated by lactate, which dynamically regulates protein functions and gene expression by covalently attaching lactate groups to lysine residues. Recent studies have shown that abnormal lactate metabolism not only contributes to the pathogenesis of epilepsy through microenvironment acidification but also influences neuroinflammation, energy metabolism imbalance, neurotransmitter dysregulation, synaptic plasticity, and epigenetic regulation via lactylation. This positions lactylation as a critical metabolic-epigenetic intersection in the pathological mechanisms of epilepsy.

View Article and Find Full Text PDF