Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Advances in MRI acquisition and data processing have become important for revealing brain structural changes. Previous studies have reported widespread structural brain abnormalities and cortical thinning in patients with temporal lobe epilepsy (TLE), as the most common form of focal epilepsy.

Methods: In this research, healthy control cases (n = 20) and patients with left TLE (n = 19) and right TLE (n = 14) were recruited, all underwent 3.0 T MRI with magnetization-prepared rapid gradient echo sequence to acquire T1-weighted images. Morphometric alterations in gray matter were identified using voxel-based morphometry (VBM). Volumetric alterations in subcortical structures and cortical thinning were also determined.

Results: Patients with left TLE demonstrated more prevailing and widespread changes in subcortical volumes and cortical thickness than right TLE, mainly in the left hemisphere, compared to the healthy group. Both VBM analysis and subcortical volumetry detected significant hippocampal atrophy in ipsilateral compared to contralateral side in TLE group. In addition to hippocampus, subcortical volumetry found the thalamus and pallidum bilaterally vulnerable to the TLE. Furthermore, the TLE patients underwent cortical thinning beyond the temporal lobe, affecting gray matter cortices in frontal, parietal, and occipital lobes in the majority of patients, more prevalently for left TLE cases. Exploiting volume changes in individual patients in the hippocampus alone led to 63.6% sensitivity and 100% specificity for lateralization of TLE.

Conclusion: Alteration of gray matter volumes in subcortical regions and neocortical temporal structures and also cortical gray matter thickness were evidenced as common effects of epileptogenicity, as manifested by the majority of cases in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-020-05003-2DOI Listing

Publication Analysis

Top Keywords

gray matter
16
temporal lobe
12
cortical thinning
12
left tle
12
tle
9
lobe epilepsy
8
voxel-based morphometry
8
patients left
8
structures cortical
8
subcortical volumetry
8

Similar Publications

The 247-keV state in ^{54}Sc, populated in the β decay of ^{54}Ca, is reported here as a nanosecond isomer with a half-life of 26.0(22) ns. The state is interpreted as the 1^{+} member of the πf_{7/2}⊗νf_{5/2} spin-coupled multiplet, which decays to the 3^{+},πf_{7/2}⊗νp_{1/2} ground state.

View Article and Find Full Text PDF

Charged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively.

View Article and Find Full Text PDF

Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.

View Article and Find Full Text PDF

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Neuroimaging Biomarkers in Postpartum Depression: A Comprehensive Review of Structural, Functional, and Metabolic Alterations.

Behav Brain Res

September 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China. Electronic address:

Postpartum Depression (PPD) is a significant perinatal mood disorder affecting many new mothers in the first postpartum year. It is characterized by emotional, cognitive, and behavioral changes, often leading to delayed diagnosis due to nonspecific symptoms. PPD arises from a complex interplay of neuroendocrine, genetic, and psychosocial factors.

View Article and Find Full Text PDF