98%
921
2 minutes
20
Objectives: The mechanical forces on circulating tumor cells (CTCs) should not be ignored in blood and it is more essential that CTCs can overcome and utilize the mechanical interaction to acquire the ability of distant metastasis. At present there are few studies on how suspension mechanics regulates the behavior of tumor cells. The aim of the study was to explore the effects of suspension state on the epithelial-mesenchymal transition (EMT) and stemness of breast CTCs and the molecular mechanisms involved.
Results: Suspension state could regulate the program of EMT in breast cancer cells, which supported the complex dynamic concept of EMT. It is that the Ras homolog family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) signaling pathway was activated by suspension state in MCF-7 cells instead of MDA-MB-231 cells. In addition, suspension state increased the stemness of breast cancer cells from different aspects.
Conclusion: The study highlighted the emergence of hybrid epithelial/mesenchymal (E/M) state during hematogenous metastasis and the plasticity of CTCs caused by cancer stem cells, further providing novel insights into clinical monitoring of CTCs and therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-020-03074-x | DOI Listing |
J Pharm Pharmacol
September 2025
Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
Objectives: To develop the orphan drug benznidazole (BNZ) in orally disintegrating tablets, for the neglected disease American Trypanosomiasis (Chagas disease) therapy. Although children are highly affected by this disease, there are no specific commercial pharmaceutical preparations for this age group in Argentina and in many other countries.
Methods: In the production process, co-milling in a ball mill was applied to enhance dissolution rates, followed by direct compression.
PLoS Negl Trop Dis
September 2025
Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
Background: Soil-transmitted helminth (STH) infections remain a public health problem in Uganda despite biannual national deworming campaigns implemented since the early 2000s. Recent surveys have indicated a heterogeneous STH infection prevalence, suggesting that the current blanket deworming strategy may no longer be cost-effective. This study identified infection predictors, estimated the geographic distribution of STH infection prevalence by species, and calculated deworming needs for school-age children (SAC).
View Article and Find Full Text PDFInt J Pharm X
December 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India.
The study explored HSPiP and QbD-(quality by design) enabled optimized cubosomes for sustained drug release, improved permeation, and enhanced oral bioavailability. OCUB1 (the optimized product) was characterized for size, zeta potential (ZP), thermal analysis, and surface roughness. drug release and hemolysis studies were carried out using a dialysis membrane and rat erythrocytes (4 % suspension), respectively.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
We introduce a theoretical and computational framework for extracting the pressure equation of state (EoS) of an active suspension from its steady-state sedimentation profile. As EoSs are prerequisites for many theories in active matter, determining how pressure depends on key parameters such as density, activity, and interparticle interactions is essential to make quantitative predictions relevant to materials design and engineering applications. Focusing on the one-dimensional active Brownian particle (1D-ABP) model, we show that the pressure measured in a homogeneous periodic system can be recovered from the spatial profiles established in sedimentation equilibrium.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:
Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.
View Article and Find Full Text PDF