Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cerebral ischemia triggers a cascade of neuroinflammatory and peripheral immune responses that contribute to post-ischemic reperfusion injury. Prior work conducted in CNS ischemia models underscore the potential to harness non-antibiotic properties of tetracycline antibiotics for therapeutic benefit. In the present study, we explored the immunomodulatory effects of the tetracycline derivative 9-tert-butyl doxycycline (9-TB) in a mouse model of transient global ischemia that mimics immunologic aspects of the post-cardiac arrest syndrome. Pharmacokinetic studies performed in C57BL/6 mice demonstrate that within four hours after delivery, levels of 9-TB in the brain were 1.6 and 9.5-fold higher than those obtained using minocycline and doxycycline, respectively. Minocycline and 9-TB also dampened inflammation, measured by reduced TNFα-inducible, NF-κβ-dependent luciferase activity in a microglial reporter line. Notably, daily 9-TB treatment following ischemia-reperfusion injury in vivo induced the retention of polymorphonuclear neutrophils (PMNs) within the spleen while simultaneously biasing CNS PMNs towards an anti-inflammatory (CD11bYm1+) phenotype. These studies indicate that aside from exhibiting enhanced CNS delivery, 9-TB alters both the trafficking and polarization of PMNs in the context of CNS ischemia-reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139467PMC
http://dx.doi.org/10.1016/j.yexmp.2020.104601DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
12
cns ischemia-reperfusion
8
cns
5
9-tb
5
effects 9-t-butyl
4
9-t-butyl doxycycline
4
doxycycline innate
4
innate immune
4
immune response
4
response cns
4

Similar Publications

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.

Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.

View Article and Find Full Text PDF

Acute extremity compartment syndrome (CS) is a serious medical complication triggered by factors such as trauma, vascular injury, or prolonged compression, resulting in elevated intracompartmental pressure (ICP) and tissue ischemia. Diagnosis remains challenging, mainly relying on the subjective evaluation of clinical symptoms. Different animal models have been used to study pathophysiology and evaluate diagnostic and therapeutic approaches.

View Article and Find Full Text PDF