Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Black carbon (BC) aerosols from incomplete combustion generally warm the climate, but the magnitudes of their various interactions with climate are still uncertain. A key knowledge gap is their role as ice nucleating particles (INPs), enabling ice formation in clouds. Here we assess the global radiative impacts of BC acting as INPs, using simulations with the Community Earth System Model 2 climate model updated to include new laboratory-based ice nucleation parameterizations. Overall, we find a moderate cooling through changes to stratiform cirrus clouds, counteracting the well-known net warming from BC's direct scattering and absorption of radiation. Our best estimates indicate that BC INPs generally thin cirrus by indirectly inhibiting the freezing of solution aerosol, with a global net radiative impact of -0.13 ± 0.07 W/m. Sensitivity tests of BC amounts and ice nucleating efficiencies, and uncertainties in the environment where ice crystals form, show a potential range of impacts from -0.30 to +0.02 W/m.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757207PMC
http://dx.doi.org/10.1029/2020GL089056DOI Listing

Publication Analysis

Top Keywords

ice nucleating
12
global radiative
8
radiative impacts
8
black carbon
8
nucleating particles
8
ice
6
impacts black
4
carbon acting
4
acting ice
4
particles black
4

Similar Publications

Impact of nucleation temperature and hydroxyethyl starch on ice crystal growth: Implications for cell viability during extreme temperature fluctuations.

J Therm Biol

August 2025

Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada. Electronic address:

Extreme temperature fluctuations during routine handling and shipping of cryopreserved cell products significantly compromise product quality in ways that extend beyond the duration and peak temperature of the fluctuation. The type of cryoprotectant used and the initial ice nucleation temperature influence ice crystal growth during rewarming events, in turn impacting cell survival. Using a cryomicroscope together with temperature profiles recorded in cord-blood units, ice crystal growth was tracked through five transient-warming events (TWEs) that peaked at -30 °C, -20 °C, or -10 °C.

View Article and Find Full Text PDF

Microplate-in-a-Box: thermophysical exploration of cold storage high-throughput microplate designs for enhanced rate control in cryopreservation.

Cryobiology

September 2025

UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. Electroni

High-throughput experimental screening is desirable to minimize data acquisition time from vast workloads. Cell cryopreservation experiments are routinely performed in single-sample cryovials despite cell seeding being performed in 96-well microplates because these substrates are known to induce microliter supercooling, are prone to thermal compressibility and their lengthy preparation period extends cell exposure time to potentially cytotoxic cryoprotectants. Rather than improving the methodological preciseness of cooling, latest efforts have focused on refining cryoprotectant formulations and supplement precautionary ice nucleators.

View Article and Find Full Text PDF

Cold-adapted organisms frequently express antifreeze proteins (AFPs) that facilitate their survival at low temperatures, with some especially potent insect AFPs exhibiting β-solenoid structures with ice-binding threonine ladders. β-solenoids exist in nature in numerous forms and emerging protein design technologies may afford opportunities to diversify them further, suggesting the possibility of developing a variety of new AFPs by installing a threonine ladder on non-AFP natural or designed β-solenoids. However, early attempts at such engineering, combined with differences observed between AFPs and structurally similar ice-nucleating proteins, have raised a critical question: Will a threonine ladder show essentially the same behavior regardless of the β-solenoid scaffold that hosts it, or does the specific solenoid scaffold significantly affect a threonine ladder's structural characteristics (and thus potentially alter its suitability for ice binding)? We set out to address this question by creating distinct variants of a simplified model β-solenoid for analysis structure prediction and molecular dynamics simulations.

View Article and Find Full Text PDF

Heterogeneous ice nucleation, triggered by surfaces, profoundly impacts climate systems, biological processes, and technological applications. Classical nucleation theory (CNT) predicts that with curvature radii decreasing within 1 order of magnitude of the critical nucleus radius, convex surfaces should suppress nucleation and concave surfaces should promote nucleation; however, such regularity has not been observed explicitly in experiments, and there are even conflicting results. Here, we resolve this long-standing controversy by providing the first experimental evidence about the bidirectional regulation of ice nucleation from both liquid and vapor phases through precisely engineered convex (nanosphere) and concave (nanopore) surfaces.

View Article and Find Full Text PDF

Combined isochoric processes of freezing and supercooling.

NPJ Sci Food

August 2025

Department of Mechanical Engineering, University of California, 6141 Etcheverry Hall, Berkeley, CA, 94720, USA.

This study presents a thermodynamic analysis and design strategy for a multiphase isochoric system that enables supercooled preservation of matter at lower temperatures without increasing the probability of ice nucleation. In isochoric supercooling, ice nucleation events follow a Poisson distribution and depend on the temperature differential between the equilibrium phase transition temperature and the preservation temperature. The proposed technology employs a multiphase isochoric system in which matter, suspended in an isotonic solution, is enclosed within a compartment bounded by a membrane that permits heat and pressure exchange but prevents mass transfer.

View Article and Find Full Text PDF