98%
921
2 minutes
20
We report on the electrically tunable optical structure based on dual-domain nematic liquid crystal (LC) alignment for in-plane beam steering applications. The device operates due to the total internal reflection of an extraordinary beam at the LC refractive index interface that separates homeotropic and planar-aligned nematics. Patterned electrodes were used in order to switch on the refractive index interface in the bulk of a planar-aligned LC layer. An outstanding feature of the proposed device is the function of tuning the spatial position of the LC interface by means of a fringing electric field, which allowed one to implement wide range light beam microscanning, as well as to realize in-plane angular beam steering with a milliradian resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.409688 | DOI Listing |
J Refract Surg
September 2025
From National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: To use parametric numerical simulation to characterize and compare the differences in corneal biomechanical responses to laser in situ keratomileusis (LASIK) and keratorefractive lenticule extraction (KLEx) under various surgical settings.
Methods: The Finite Element Model was used in a parametric study to evaluate corneal biomechanical responses to LASIK and KLEx, considering variations in preoperative corneal thickness, corneal flap/cap thickness and diameter, refractive correction, and optical zone diameter. Surgery-induced stress, displacement, and interface contact pressure were compared between LASIK and KLEx using the Wilcoxon signed-rank test.
Vestn Oftalmol
September 2025
Multidisciplinary Medical Center of Svyatoslav Fedorov Foundation for the Promotion of Advanced Medical Technologies, Moscow, Russia.
Unlabelled: Diffuse lamellar keratitis (DLK) is a known complication of lamellar corneal surgery. The underlying mechanism of the cellular response in DLK is well described. There are two clinical forms - sporadic and cluster - each largely influenced by surgical triggers.
View Article and Find Full Text PDFNano Lett
September 2025
Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.
The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.
View Article and Find Full Text PDFACS Appl Nano Mater
August 2025
Department of Physics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
Accurate and noninvasive detection of cancer cells is critical for advancing early stage cancer diagnostics and monitoring tumor progression. While manual enumeration methods, such as hemocytometry, remain in use, they suffer from limited sensitivity and scalability. In this article, we report the first feasibility study demonstrating a graphene oxide (GO)-functionalized long-period fiber grating (LPG) sensor for the label-free detection of MCF-7 human breast cancer cell density via secreted cellular byproducts.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
Intravital lung imaging has been employed to study physiological and pathophysiological processes related to nanoparticle deposition in the alveolar lung, particularly in the context of air pollution and drug delivery. However, optical imaging depth is limited, often attributed to the refractive index (RI) mismatch at the alveolar air-tissue interface. To investigate this, we evaluated two complementary strategies.
View Article and Find Full Text PDF