98%
921
2 minutes
20
Objective: To study the need for inclusion of shaped RF pulses and magnetic field gradients in simulations of basis sets for the analysis of proton MR spectra of single voxels of the brain acquired with a semi-LASER pulse sequence.
Materials And Methods: MRS basis sets where simulated at different echo times with hard RF pulses as well as with shaped RF pulses without or with magnetic field gradients included. The influence on metabolite concentration quantification was assessed using both phantom and in vivo measurements. For comparison, simulations and measurements were performed with the PRESS pulse sequence.
Results: The effect of including gradients in the simulations was smaller for semi-LASER than for PRESS, however, still noticeable. The difference was larger for strongly coupled metabolites and at longer echo times. Metabolite quantification using semi-LASER was thereby less dependent on the inclusion of gradients than PRESS, which was seen in both phantom and in vivo measurements.
Discussion: The inclusion of the shaped RF pulses and magnetic field gradients in the simulation of basis sets for semi-LASER is only important for strongly coupled metabolites. If computational time is a limiting factor, simple simulations with hard RF pulses can provide almost as accurate metabolite quantification as those that include the chemical-shift related displacement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338815 | PMC |
http://dx.doi.org/10.1007/s10334-020-00900-1 | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
September 2025
School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, PR China. Electronic address:
Background: Sexual dimorphism in human brain has garnered significant attention in neuroscience research. Although multiple investigations have examined sexual dimorphism in gray matter (GM) functional connectivity (FC), the research of white matter (WM) FC remains relatively limited.
Methods: Utilizing resting-state fMRI data from 569 healthy young adults, we investigated sexual dimorphism in the WM functional connectome.
J Chem Theory Comput
September 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.
The Slater-type F12 geminal length scales originally tuned for the second-order Mo̷ller-Plesset F12 method are too large for higher-order F12 methods formulated using the SP (diagonal fixed-coefficient spin-adapted) F12 ansatz. The new geminal parameters reported herein reduce the basis set incompleteness errors (BSIEs) of absolute coupled-cluster singles and doubles F12 correlation energies by a significant─and increase with the cardinal number of the basis─margin. The effect of geminal reoptimization is especially pronounced for the cc-pVZ-F12 basis sets (specifically designed for use with F12 methods) relative to their conventional aug-cc-pVZ counterparts.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Radiology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China.
Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.
Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.
J Chem Phys
September 2025
School of Materials, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
We introduce an extended formulation of the non-Markovian stochastic Schrödinger equation with complex frequency modes (extended cNMSSE), designed for simulating open quantum system dynamics under arbitrary spectral densities. This extension employs non-exponential basis sets to expand the bath correlation functions, overcoming the reliance of the original cNMSSE on exponential decompositions of the spectral density. Consequently, the extended cNMSSE is applicable to environments beyond those characterized by Debye-type spectral densities.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Department of Computer Science and Engineering College of Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350, USA, Seattle, Washington, 98105, UNITED STATES.
Unlabelled: Closed-loop neural stimulation provides novel therapies for neurological diseases such as Parkinson's disease (PD), but it is not yet clear whether artificial intelligence (AI) techniques can tailor closed-loop stimulation to individual patients or identify new therapies. Further advancements are required to address a number of difficulties with translating AI to this domain, including sample efficiency, training time, and minimizing loop latency such that stimulation may be shaped in response to changing brain activity.
Approach: we propose temporal basis function models (TBFMs) to address these difficulties, and explore this approach in the context of excitatory optogenetic stimulation.