Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ongoing development of drug resistance in HIV continues to push for the need of alternative drug targets in inhibiting HIV. One such target is the Reverse transcriptase (RT) enzyme which is unique and critical in the viral life cycle-a rational target that is likely to have less off-target effects in humans. Serendipitously, we found two chemical scaffolds from the National Cancer Institute (NCI) Diversity Set V that inhibited HIV-1 RT catalytic activity. Computational structural analyses and subsequent experimental testing demonstrated that one of the two chemical scaffolds binds to a novel location in the HIV-1 RT p51 subunit, interacting with residue Y183, which has no known association with previously reported drug resistance. This finding supports the possibility of a novel druggable site on p51 for a new class of non-nucleoside RT inhibitors that may inhibit HIV-1 RT allosterically. Although inhibitory activity was shown experimentally to only be in the micromolar range, the scaffolds serve as a proof-of-concept of targeting the HIV RT p51 subunit, with the possibility of medical chemistry methods being applied to improve inhibitory activity towards more effective drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763519PMC
http://dx.doi.org/10.3390/molecules25245902DOI Listing

Publication Analysis

Top Keywords

p51 subunit
12
reverse transcriptase
8
drug resistance
8
chemical scaffolds
8
inhibitory activity
8
alternative hiv-1
4
hiv-1 non-nucleoside
4
non-nucleoside reverse
4
transcriptase inhibition
4
inhibition mechanism
4

Similar Publications

Striatal GluN2A gene suppression reduces L-DOPA-induced abnormal involuntary movements in parkinsonian rats.

Neuropharmacology

November 2025

Emory National Primate Research Center, Emory University, Atlanta, 30329, Georgia; Department of Neurology, Emory University School of Medicine, Atlanta, 30322, Georgia. Electronic address:

L-DOPA-induced dyskinesia (LID) is a common disabling complication of long-term L-DOPA therapy in Parkinson's disease (PD). LID development is associated with maladaptive plasticity mechanisms in striatal circuits contributed by dysregulated dopamine and glutamate signaling. Upregulation of the NMDAR subunit 2A (GluN2A) over chronic L-DOPA treatment is thought to play a role in corticostriatal synaptic changes.

View Article and Find Full Text PDF

Anti-HIV-1 antibodies capable of mediating ADCC are elicited by the majority of people with HIV-1 and preferentially target the "open," CD4-bound conformation of HIV-1 envelope glycoproteins (Env). However, due to the "closed" conformation sampled by unliganded HIV-1-Envs, these antibodies are ineffective at eliminating infected cells. BNM-III-170 is a small-molecule CD4-mimetic compound that binds the Phe43 cavity of the gp120 subunit of Env, forcing Env to "open up," thus exposing epitopes targeted by CD4-induced (CD4i), ADCC-mediating antibodies.

View Article and Find Full Text PDF

Congenital cytomegalovirus (cCMV) is the leading infectious cause of neonatal neurological impairment worldwide, but the viral factors enabling vertical spread across the placenta remain undetermined. The pentameric complex (PC), composed of the subunits gH/gL/UL128/UL130/UL131A, has been demonstrated to be important for entry into nonfibroblast cells in vitro. These findings link the PC to broad cell tropism and virus dissemination in vivo, denoting all subunits as potential targets for intervention strategies and vaccine development.

View Article and Find Full Text PDF

Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen.

Cell Rep

November 2024

Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:

The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.

View Article and Find Full Text PDF

Lyme disease, caused by and related species is a growing health threat to companion animals across North America and Europe. Vaccination is an important preventive tool used widely in dogs living in, or near, endemic regions. In this report, we assessed anti-outer surface protein (Osp) A and anti-OspC antibody responses in -infected and -naïve mice (C3H/HeN) after immunization with a murine-optimized single dose of the Lyme disease subunit vaccine, Vanguard crLyme.

View Article and Find Full Text PDF