Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is a heterogeneous disease, which is the consequence of several genetic and environmental factors. Also, it is one of the most common causes of cancer death and second leading cancer among women all around the world. Therefore, it is necessary to develop novel therapeutic approaches useful for the successful treatment of breast cancer. As conventional treatments had limited success, alternative approaches for the treatment of breast cancer have been applied in recent years. Hence, the molecular basis of breast cancer has provided the opportunity of using genetic materials for therapeutic uses. In this regard, gene therapy as one of the potentially efficient and beneficial treatments among various techniques became a popular treatment for different cancers, especially breast cancer. Accordingly, there are plenty of targets available for gene therapy of breast cancer. Gene therapy strategies have the potential to correct molecular defects that contributed to the cancer progression. These techniques should selectively target tumor cells without affecting normal cells. Moreover, data of clinical trials in gene therapy for breast cancer indicated that this approach has little toxicity compared to other therapeutic approaches. In this study, different aspects of breast neoplasm, gene therapy techniques, challenges, and recent developments will be mentioned.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2020.199DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
gene therapy
24
cancer
11
breast
9
therapeutic approaches
8
treatment breast
8
therapy breast
8
gene
6
therapy
5
therapy emerging
4

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF