A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Statistical Binding Matching between Influenza A Virus and Dynamic Glycan Clusters Determines Its Adhesion onto Lipid Membranes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The resistance of drugs to the new influenza A virus (IAV) strains and the limited efficiency of vaccines to prevent seasonal flu epidemics underscore the urgency in finding novel strategies to block IAV infection, which is required to gain insights into the mechanism of the initial step of IAV adhesion. While it is well established that IAVs bind to respiratory tract cells by recognizing sialylated glycans on host cell membranes through a multivalency effect, how IAVs dynamically respond to multiple glycan receptors distinct valencies has not been fully understood, limiting the discovery of novel anti-flu strategies. Using single-particle tracking to record the 2D mobilities and surface residence times of highly pathogenic H5N1 avian IAVs adhered to fluidic membranes containing α2-3 sialylated GM3 glycolipids, we quantified the univalent and multivalent IAV adhesion channels, which provide insights into the mechanism of IAV binding; IAV can guide the clustering of dynamic glycolipids to statistically match the multivalent binding affinities for IAV adhesion. This mechanism can be inhibited by disrupting the dynamic glycan clustering on membranes of varying fluidities, like the gel phase membrane. This work facilitates a deeper fundamental understanding of IAV infection as well as the development of novel anti-flu strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02047DOI Listing

Publication Analysis

Top Keywords

iav adhesion
12
influenza virus
8
dynamic glycan
8
iav
8
iav infection
8
insights mechanism
8
novel anti-flu
8
anti-flu strategies
8
statistical binding
4
binding matching
4

Similar Publications