98%
921
2 minutes
20
Somersaults with or without twists are the most important elements in sports such as gymnastics or trampolining. Moreover, to perform elements with the highest possible difficulty gymnasts should show good form and execution during the flight phase. In order to ensure perfect body control and a safe landing, gaze behavior has been proven to be crucial for athletes to orientate in the air. As eye movement and head movement are closely coordinated, both must be examined while investigating gaze behavior. The aim of the current study is to analyze athletes' head motion and gaze behavior during somersaults with full twists. 15 skilled trampoline gymnasts performed back straight somersaults with a full twist (back full) on the trampoline. Eye movement and head movement were recorded using a portable eye-tracking device and a motion capture suit. The results indicate that gymnasts use the trampoline bed as a fixation point for orientation and control the back full, whereas the fixation onsets for athletes of a better performance class occur significantly later. A strong coordination between gymnasts' eye movement and head movement could be determined: stabilizing the gaze during the fixation period, the eyes move in combination with the head against the twisted somersault direction to counteract the whole body rotation. Although no significant differences could be found between the performance classes with regard to the maximum axial head rotations and maximum head extensions, there seems to be a trend that less skilled gymnasts need orientation as early as possible resulting in greater head rotation angles but a poorer execution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2020.102740 | DOI Listing |
Sports Biomech
March 2025
Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC-Institut de Biomécanique Humaine Georges Charpak, HESAM Université, Paris, France.
Back pain is prevalent among gymnast populations and extreme flexion or extension of the lumbar spine along with high ground reaction forces (GRFs) are known to increase intervertebral stress. The aim of this study was to determine which postures and dynamic conditions among common floor movements provide the greatest risk of injury in men's artistic gymnastics (MAG). For this purpose, lumbar spine curvatures, obtained through a full-body subject-specific kinematic model fed by motion capture data, and GRFs on feet and hands were compared between typical floor movements of MAG ( and ) performed by six adolescent gymnasts.
View Article and Find Full Text PDFSports Biomech
February 2023
Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, QC, Canada.
When estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalised for five elite trampoline athletes performing various backward and forward twisting somersaults.
View Article and Find Full Text PDFHum Mov Sci
February 2021
Department of Movement Science, University of Muenster, Muenster, Germany; Otto Creutzfeld Center, University of Muenster, Muenster, Germany.
Somersaults with or without twists are the most important elements in sports such as gymnastics or trampolining. Moreover, to perform elements with the highest possible difficulty gymnasts should show good form and execution during the flight phase. In order to ensure perfect body control and a safe landing, gaze behavior has been proven to be crucial for athletes to orientate in the air.
View Article and Find Full Text PDFJ Biomech
June 2017
School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.
An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs.
View Article and Find Full Text PDFJ Biomech
April 2014
School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.
In the takeoff and early flight phase of a twisting somersault, joint coordination is based on feed-forward control whereas in the late stages of the flight phase configuration adjustments are made using feedback control to ensure accurate completion of the movement and appropriate landing orientation. The aim of this study was to use a computer simulation model of aerial movement to investigate the extent to which arm and hip movements can control twist and somersault rotation in the flight phase of a twisting somersault. Two mechanisms were considered for the control of twist in simulated target trampoline movements with flight times of 1.
View Article and Find Full Text PDF