98%
921
2 minutes
20
Purpose: This study aimed to investigate the biomechanical effects of a newly developed interspinous process device (IPD), called TAU. This device was compared with another IPD (SPIRE) and the pedicle screw fixation (PSF) technique at the surgical and adjacent levels of the lumbar spine.
Materials And Methods: A three-dimensional finite element model analysis of the L1-S1 segments was performed to assess the biomechanical effects of the proposed IPD combined with an interbody cage. Three surgical models-two IPD models (TAU and SPIRE) and one PSF model-were developed. The biomechanical effects, such as range of motion (ROM), intradiscal pressure (IDP), disc stress, and facet loads during extension were analyzed at surgical (L3-L4) and adjacent levels (L2-L3 and L4-L5). The study analyzed biomechanical parameters assuming that the implants were perfectly fused with the lumbar spine.
Results: The TAU model resulted in a 45%, 49%, 65%, and 51% decrease in the ROM at the surgical level in flexion, extension, lateral bending, and axial rotation, respectively, when compared to the intact model. Compared to the SPIRE model, TAU demonstrated advantages in stabilizing the surgical level, in all directions. In addition, the TAU model increased IDP at the L2-L3 and L4-L5 levels by 118.0% and 78.5% in flexion, 92.6% and 65.5% in extension, 84.4% and 82.3% in lateral bending, and 125.8% and 218.8% in axial rotation, respectively. Further, the TAU model exhibited less compensation at adjacent levels than the PSF model in terms of ROM, IDP, disc stress, and facet loads, which may lower the incidence of the adjacent segment disease (ASD).
Conclusion: The TAU model demonstrated more stabilization at the surgical level than SPIRE but less stabilization than the PSF model. Further, the TAU model demonstrated less compensation at adjacent levels than the PSF model, which may lower the incidence of ASD in the long term. The TAU device can be used as an alternative system for treating degenerative lumbar disease while maintaining the physiological properties of the lumbar spine and minimizing the degeneration of adjacent segments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732105 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243771 | PLOS |
Biomed Pharmacother
September 2025
Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
School of Medicine and Public Health, University of Wisconsin-Madison, Madison.
Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.
Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.
Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.
Nanoscale
September 2025
Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
School of Sports Science and Technology, Guangzhou College of Applied Science and Technology, Guangdong, China.
Objective: This study combines a bibliometric analysis with an umbrella review to delineate the research landscape, hotspots, and emerging trends in the application of artificial intelligence to the clinical diagnosis and treatment of mild cognitive impairment.
Methods: We searched the Web of Science Core Collection for literature published between 2004 and 2024. Bibliometric analysis of the retrieved publications was performed using CiteSpace and VOSviewer to map publication trends, international collaboration networks, key contributors, and keyword co-occurrence.
Exp Neurol
September 2025
Division of Pharmacology and Pharmacotherapy, Drug Research Programme, Faculty of Pharmacy, University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland. Electronic address:
Traumatic brain injury (TBI) impacts up to 60 million people annually. Both severe TBIs and repeated mild TBIs (rmTBIs) can lead to persistent symptoms such as cognitive deficits, and even neurodegenerative diseases like chronic traumatic encephalopathy (CTE). To date, no therapies exist to mitigate the risk of CTE or other chronic symptoms post-TBI.
View Article and Find Full Text PDF