98%
921
2 minutes
20
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714679 | PMC |
http://dx.doi.org/10.1016/j.btre.2020.e00563 | DOI Listing |
Appl Environ Microbiol
September 2025
School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA.
Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.
The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA.
Unlabelled: Microbial mats inhabiting extreme environments have been studied as modern analogs of stromatolites. Mats in Octopus Spring and Mushroom Spring, Yellowstone National Park, are predominated by unicellular photoautotrophic cyanobacteria ( spp.), which are thought to cross-feed filamentous photoheterotrophic bacteria (mainly spp.
View Article and Find Full Text PDFBioresour Technol
August 2025
CRETUS, Department of Chemical Engineering, School of Engineering, Rua Lope Gomez de Marzoa, S/n, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Galicia, Spain. Electronic address:
Purple phototrophic bacteria (PPB) are metabolically versatile microorganisms capable of adapting to diverse environmental conditions in biotechnological applications, including polyhydroxyalkanoate (PHA) production. This study explores how salinity drives metabolic specialization by comparing non-saline (R-NS) and saline-adapted (R-S) cultures fed with acetic acid. R-S accumulated significantly more PHA (up to 42 dw%) than in R-NS (up to 11%).
View Article and Find Full Text PDF