98%
921
2 minutes
20
Background: Tourette's syndrome (TS) is a neurodevelopmental condition characterized by multiple motor and vocal tics. Qiangzhi decoction (QD), a well-known herbal decoction, has been used in treating TS in China for decades. We have found relevance between the indications of QD and the classic symptoms of TS. The pharmacological mechanisms of QD in treating TS are still unclear.
Methods: The active compounds of QD were extracted from multi-database, including TCMSP (the Traditional Chinese Medicine Systems Pharmacology database), and potential targets of the compounds were compiled by target fishing. The TS target database was established, and then the protein-protein interaction (PPI) network was constructed to analyze the interactions between the potential targets of compounds in QD and targets associated with TS and screened the core targets by topology. The DAVID bioinformatics database was used to conduct the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
Results: 59 active molecules and 585 potential targets of QD were selected. The consequences of the DAVID enrichment analysis show that 36 cellular biological processes (FDR <0.01) and 65 pathways (FDR <0.01) of QD chiefly took part in the convoluted treating effects relevant to the dopamine system, inflammation, and infection, and miRNA pathway. Fourteen core targets of QD were found as potential targets of the treatment of TS.
Conclusions: QD could relieve the symptoms of TS through the molecular mechanisms predicted by network pharmacology. This study supplies insight into how network pharmacology can predict traditional Chinese herbal medicine's possible molecular mechanisms (TCHM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21037/apm-20-2158 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.
Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.
View Article and Find Full Text PDFESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDFCRISPR homing gene drive is a disruptive biotechnology developed over the past decade with potential applications in public health, agriculture, and conservation biology. This technology relies on an autonomous selfish genetic element able to spread in natural populations through the release of gene drive individuals. However, it has not yet been deployed in the wild.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.
View Article and Find Full Text PDF