98%
921
2 minutes
20
Enrofloxacin (EFX) was selected as the medicinal ligand to afford a new copper(ii)-based complex, EFX-Cu, which was structurally characterized by spectroscopic analyses including X-ray single crystal diffraction. It was also stable and could retain the coordination state in aqueous solution. The in vitro antibacterial activity of EFX-Cu against a panel of pathogenic bacteria was about the same as that of EFX, except that it was twice as active against E. coli. The in vivo test on mice gave a LD50 value of 8148 mg kg-1 for EFX-Cu, which was much lower than those for EFX (LD50, 5312 mg kg-1) and its clinically used sodium salt, EFX-Na (LD50, 1421 mg kg-1). In addition, no obvious lesions in the organs of the dead mice were found by histopathological examination. Pharmacokinetic studies on rats suggested similar pharmacokinetics between EFX-Cu and EFX. On the other hand, EFX-Cu showed higher acute toxicity than EFX-Na in zebrafish, which was inconsistent with that in mice. The ROS-related inflammation and anti-inflammatory assay of EFX-Cu, respectively, in normal cells and zebrafish could be ascribed to its ROS-related redox property. Unfortunately, the final in vivo therapeutic assay in the E. coli-infected mouse model indicated that the therapeutic effect of EFX-Cu, mainly in terms of mortality in mice, was found to be lower than that of EFX-Na at the same dosage (800 mg kg-1, continuous gavage), although the contradictory factors between toxicity and antibacterial activity could not be excluded in this trial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0mt00155d | DOI Listing |
Lasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2025
Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China.
In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.
View Article and Find Full Text PDFJ Burn Care Res
September 2025
Shanghai Starriver Bilingual School, Shanghai, China.
Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.
Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.