Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: For stereotactic radiosurgery (SRS), accurate evaluation of dose-volume metrics for small structures is necessary. The purpose of this study was to compare the DVH metric capabilities of five commercially available SRS DVH analysis tools (Eclipse, Elements, Raystation, MIM, and Velocity).

Methods: DICOM RTdose and RTstructure set files created using MATLAB were imported and evaluated in each of the tools. Each structure set consisted of 50 randomly placed spherical targets. The dose distributions were created on a 1-mm grid using an analytic model such that the dose-volume metrics of the spheres were known. Structure sets were created for 3, 5, 7, 10, 15, and 20 mm diameter spheres. The reported structure volume, V100% [cc], and V50% [cc], and the RTOG conformity index and Paddick Gradient Index, were compared with the analytical values.

Results: The average difference and range across all evaluated target sizes for the reported structure volume was - 4.73%[-33.2,0.2], 0.11%[-10.9, 9.5], -0.39%[-12.1, 7.0], -2.24%[-21.0, 1.3], and 1.15%[-15.1,0.8], for TPS-A through TPS-E, respectively. The average difference and range for the V100%[cc] (V20Gy[cc]) was - 0.4[-24.5,9.8], -2.73[-23.6, 1.1], -3.01[-23.6, 0.6], -3.79[-27.3, 1.3], and 0.26[-6.1,2.6] for TPS-A through TPS-E, respectively. For V50%[cc](V10Gy[cc]) in TPS-A through TPS-E the average and ranger were - 0.05[-0.8,0.4], -0.18[-1.2, 0.5], -0.44[-1.4, 0.3], -0.26[-1.8, 2.6], and 0.09[-1.4,2.7].

Conclusion: This study expanded on the previously published literature to quantitatively compare the DVH analysis capabilities of software commonly used for SRS plan evaluation and provides freely available and downloadable analytically derived set of ground truth DICOM dose and structure files for the use of radiotherapy clinics. The differences between systems highlight the need for standardization and/or transparency between systems, especially when evaluating plan quality for multi-institutional clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248418PMC
http://dx.doi.org/10.1002/mp.14645DOI Listing

Publication Analysis

Top Keywords

tps-a tps-e
12
dose-volume metrics
8
compare dvh
8
dvh analysis
8
reported structure
8
structure volume
8
average difference
8
difference range
8
tps-e average
8
structure
5

Similar Publications

Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P.

View Article and Find Full Text PDF

This study explores the basic characteristics and potential functions of the terpene synthase(TPS) gene family members in Lonicera japonica. The L. japonica TPS(LjTPS) gene family was identified and functionally analyzed using bioinformatics methods.

View Article and Find Full Text PDF

Phylogeny and Functional Differentiation of the Terpene Synthase Gene Family in Angiosperms with Emphasis on .

Int J Mol Sci

February 2025

Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Efficient Production of F

Terpenes are pivotal for plant growth, development, and adaptation to environmental stresses. With the advent of extensive genomic data and sophisticated bioinformatics tools, new insights into the evolutionary dynamics and functional diversification of terpene synthases (TPSs) have emerged. Despite genome-wide identifications of the TPS family in certain species, comprehensive cross-species analyses remain scarce.

View Article and Find Full Text PDF

Expansion and functional divergence of terpene synthase genes in angiosperms: a driving force of terpene diversity.

Hortic Res

January 2025

Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China.

Angiosperms are prolific producers of structurally diverse terpenes, which are essential for plant defense responses, as well as the formation of floral scents, fruit flavors, and medicinal constituents. Terpene synthase genes (TPSs) play crucial roles in the biosynthesis of terpenes. This study specifically focuses on the catalytic products of 222 functionally characterized TPSs in 24 angiosperms, which mainly comprise monoterpenes, sesquiterpenes, diterpenes, and sesterterpene.

View Article and Find Full Text PDF

Terpene synthases (TPSs) play a crucial role in the synthesis of terpenoids that contribute to the scent profiles of flowers. However, few studies report the genome-wide analysis of s gene in var. and their expression pattern in response to methyl jasmonate (MeJA).

View Article and Find Full Text PDF