98%
921
2 minutes
20
Functional electrical stimulation (FES) is commonly used for individuals with neuromuscular impairments to generate muscle contractions. Both joint torque and stiffness play important roles in maintaining stable posture and resisting external disturbance. However, most previous studies only focused on the modulation of joint torque using FES while ignoring the joint stiffness. A model that can simultaneously modulate both ankle torque and stiffness induced by FES was investigated in this study. This model was composed of four subparts including an FES-to-activation model, a musculoskeletal geometry model, a Hill-based muscle-tendon model, and a joint stiffness model. The model was calibrated by the maximum voluntary contraction test of the tibialis anterior (TA) and gastrocnemius medial (GAS) muscles. To validate the model, the estimated torque and stiffness by the model were compared with the measured torque and stiffness induced by FES, respectively. The results showed that the proposed model can estimate torque and stiffness with electrically stimulated TA or/and GAS, which was significantly correlated to the measured torque and stiffness. The proposed model can modulate both joint torque and stiffness induced by FES in the isometric condition, which can be potentially extended to modulate the joint torque and stiffness during FES-assisted walking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2020.3042221 | DOI Listing |
PLoS One
September 2025
Department of design fundamentals, Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
The slider-crank mechanism (SCM) is fundamental to various mechanical systems. However, optimizing its dynamic performance remains a pressing challenge due to excessive torque, joint reactions, and energy consumption. This study introduces two key innovations to address these challenges: (1) the integration of springs into SCM to optimize dynamic performance and (2) a novel hybrid optimization approach combining the Conjugate Direction with Orthogonal Shift (CDOS) method and Parameter Space Investigation (PSI).
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
This study aimed to characterize motor noise in human standing balance and uncover mechanisms that enable the nervous system to robustly sense and control upright posture despite this variability. We conducted three experiments using a robotic balance simulator. First, we quantified the natural variability of ankle torques, revealing that torque variability was stable within preferred postures and increased only at more extreme orientations.
View Article and Find Full Text PDFSci Rep
September 2025
Structural Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
Hollow ultra-high-performance concrete (UHPC) members subjected to axial pre-compression and torsion represent realistic loading scenarios commonly observed in modern engineering structures, including bridge box girders, prestressed members, and high-rise tubular columns. The inclusion of web openings further reflects practical design requirements. However, the combined effect of pre-compression, torsion, and openings on UHPC members remains insufficiently addressed in literature.
View Article and Find Full Text PDFMicromachines (Basel)
July 2025
School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range.
View Article and Find Full Text PDFMedicina (Kaunas)
August 2025
Institute of Human Movement Science, Sport and Health, Graz University, 8010 Graz, Austria.
: The Nordic hamstring exercise (NHE) effectively strengthens the hamstrings, reduces the risk of hamstring strain, and induces fatigue in the muscles; thus, post-NHE recovery strategies should be optimized. Foam rolling (FR) is a widely used method, with the belief that it can speed up recovery. Thus, this study investigated the acute and 48-h effects of FR following the NHE on muscle stiffness, pain pressure threshold (PPT), flexibility, countermovement jump (CmJ) height, and maximal voluntary isometric contraction (MVIC).
View Article and Find Full Text PDF