BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms.

Am J Hum Genet

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Ne

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820627PMC
http://dx.doi.org/10.1016/j.ajhg.2020.11.003DOI Listing

Publication Analysis

Top Keywords

ncbaf complex
12
bicra
9
swi/snf complex
8
intellectual disability
8
facial features
8
digit/nail hypoplasia
8
chromatin remodeling
8
complex members
8
complex
5
bicra swi/snf
4

Similar Publications

Peroxisome proliferator-activated receptor α (PPARα) regulates the transcription of fatty acid oxidation-related genes, such as carnitine palmitoyltransferase 1A (CPT1A), to maintain lipid homeostasis. Recent studies have suggested the involvement of switch/sucrose non-fermentable (SWI/SNF) complexes in nuclear receptor-mediated transcription. SWI/SNF complexes are chromatin remodeling factors classified into three complexes: canonical brahma-related gene 1-/brahma-associated factor (cBAF), polybromo BAF (PBAF), and non-canonical BAF (ncBAF).

View Article and Find Full Text PDF

BRD9 inhibition overcomes oncolytic virus therapy resistance in glioblastoma.

Cell Rep Med

August 2025

Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China; Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China; School of Life Sciences, Wes

Long-term survival of glioblastoma multiforme (GBM) remains challenging, spurring the development of novel therapies such as oncolytic virus therapy. While oncolytic virus shows promise in clinical trials, many patients do not respond to this therapy. Here, we perform a CRISPR screening and identify the non-canonical BRG1/BRM-associated factor (ncBAF) complex as a pivotal tumor-intrinsic factor for oncolytic virotherapy resistance.

View Article and Find Full Text PDF

Mutations that impact subunits of mammalian SWI/SNF (mSWI/SNF or BAF) chromatin remodeling complexes are found in over 20% of human cancers. Among these subunits, ARID1A is the most frequently mutated gene, occurring in over 8% of various cancers. The majority of ARID1A mutations are frameshift or nonsense mutations, causing loss of function.

View Article and Find Full Text PDF

Constitutive androstane receptor (CAR) is a nuclear receptor that plays an important role in regulating drug metabolism and bile acid homeostasis in the liver. Recently, it was revealed that the switch/sucrose non-fermentable (SWI/SNF) complex, a chromatin remodeler, regulates transactivation by nuclear receptors, such as the pregnane X receptor and vitamin D receptor. However, studies on the involvement of the SWI/SNF complex in CAR-mediated transactivation are limited.

View Article and Find Full Text PDF

The hierarchical organization of hematopoietic stem cells (HSCs) governing adult hematopoiesis has been extensively investigated. However, the dynamic epigenomic transition from fetal to adult hematopoiesis remains incompletely understood, particularly regarding the involvement of epigenetic factors. In this study, we investigate the roles of BRD9, an essential component of the non-canonical BAF (ncBAF) complex known to govern the fate of adult HSCs, in fetal hematopoiesis.

View Article and Find Full Text PDF