Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Nile rat (Arvicanthis niloticus) is a novel diurnal carbohydrate-sensitive rodent useful for studies on type 2 diabetes mellitus (T2DM) and the metabolic syndrome. Hepatic responses to T2DM and any interventions thereof can be evaluated via transcriptomic gene expression analysis. However, the study of gene expression via real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) requires identification of stably expressed reference genes for accurate normalisation. This study describes the evaluation and identification of stable reference genes in the livers from Control Nile rats as well as those supplemented with Water-Soluble Palm Fruit Extract, which has been previously shown to attenuate T2DM in this animal model. Seven genes identified as having stable expression in RNA-Sequencing transcriptome analysis were chosen for verification using real-time RT-qPCR. Six commonly used reference genes from previous literature and two genes from a previous microarray gene expression study in Nile rats were also evaluated. The expression data of these 15 candidate reference genes were analysed using the RefFinder software which incorporated analyses performed by various algorithms. The Hpd, Pnpla6 and Vpp2 genes were identified as the most stable across the 36 samples tested. Their applicability was demonstrated through the normalisation of the gene expression profiles of two target genes, Cela1 and Lepr. In conclusion, three novel reference genes which can be used for robust normalisation of real-time RT-qPCR data were identified, thereby facilitating future hepatic gene expression studies in the Nile rat.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-020-06003-3DOI Listing

Publication Analysis

Top Keywords

reference genes
24
gene expression
24
nile rats
12
genes
10
polymerase chain
8
chain reaction
8
expression
8
expression studies
8
studies nile
8
water-soluble palm
8

Similar Publications

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Aspects of Genetic Diversity, Host Specificity and Public Health Significance of Single-Celled Intestinal Parasites Commonly Observed in Humans and Mostly Referred to as 'Non-Pathogenic'.

APMIS

September 2025

Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.

Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.

View Article and Find Full Text PDF

The Nanopig™ model is an emerging non-rodent platform for (bio)pharmaceutical safety assessment, with potential advantages for translational research. Here, we report initial characterization results using whole genome sequencing (WGS) and tissue-based proteomics, focusing on drug metabolism and immune system relevance. WGS produced a high-quality Nanopig™ genome assembly (2.

View Article and Find Full Text PDF

EzBioCloud 16S rRNA Gene Sequence Formatter: a Python-based sequence formatting tool for systematic microbiology.

Int J Syst Evol Microbiol

September 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.

EzBioCloud is one of the practical reference databases and analytical platforms for systematic microbiology research. The EzBioCloud database provides convenient services in this regard, especially for performing sequence analysis using the 16S rRNA genes. However, '.

View Article and Find Full Text PDF

Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.

Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.

View Article and Find Full Text PDF