98%
921
2 minutes
20
Bacterial infection triggers a cytokine storm that needs to be resolved to maintain the host's wellbeing. Here, we report that ablation of mA methyltransferase subunit METTL14 in myeloid cells exacerbates macrophage responses to acute bacterial infection in mice, leading to high mortality due to sustained production of pro-inflammatory cytokines. METTL14 depletion blunts Socs1 mA methylation and reduces YTHDF1 binding to the mA sites, which diminishes SOCS1 induction leading to the overactivation of TLR4/NF-κB signaling. Forced expression of SOCS1 in macrophages depleted of METTL14 or YTHDF1 rescues the hyper-responsive phenotype of these macrophages in vitro and in vivo. We further show that LPS treatment induces Socs1 mA methylation and sustains SOCS1 induction by promoting Fto mRNA degradation, and forced FTO expression in macrophages mimics the phenotype of METTL14-depleted macrophages. We conclude that mA methylation-mediated SOCS1 induction is required to maintain the negative feedback control of macrophage activation in response to bacterial infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755741 | PMC |
http://dx.doi.org/10.1016/j.devcel.2020.10.023 | DOI Listing |
Macromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Graduate Institute of Medical Sciences, National Defense Medical University, Taipei City 114201, Taiwan (R.O.C.).
Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.
Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.
Macromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
September 2025
Department of Cardiothoracic Surgery, Royal Children’s Hospital, Melbourne, Australia
The patient had rheumatic heart disease, which resulted in severe aortic and mitral valve regurgitation. Repair of both valves was performed at 9 years of age. During surgery, the retracted aortic valve cusps required extension with bovine pericardial patches and suture reduction annuloplasty, and the mitral valve was repaired using a Cosgrove-Edwards (Edwards Lifesciences LLC, Irvine, CA) annuloplasty band.
View Article and Find Full Text PDF