Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668741PMC
http://dx.doi.org/10.26434/chemrxiv.12682316DOI Listing

Publication Analysis

Top Keywords

virtual screening
8
sites potential
8
target
5
multi-pronged approach
4
approach targeting
4
targeting sars-cov-2
4
sars-cov-2 proteins
4
proteins ultra-large
4
ultra-large virtual
4
screening severe
4

Similar Publications

Purpose: The purpose of this study was to determine through a Delphi process a list of outcomes measures for clinicians to use when assessing individuals with Lumbar Spinal Stenosis (LSS).

Methods: A three-phase Delphi process was conducted by the International Society for the Study of the Lumbar Spine (ISSLS) Lumbar Spinal Stenosis Taskforce, including two online surveys, two virtual meetings, and three in-person consensus meetings at the ISSLS annual conferences (2023-2025). Participants evaluated and ranked outcome measures for LSS, with final endorsement requiring > 66% agreement.

View Article and Find Full Text PDF

The goal was to develop a pragmatic classification system for conditions associated with chronic pelvic pain (CPP), aiming to enhance diagnosis, management, education, and research of CPP. An international, multidisciplinary panel participated in a modified RAND/UCLA Delphi consensus. This panel included healthcare professionals, medical society representatives, experts, individuals with lived experience of pain, advocacy groups, researchers, educators, and journal editors.

View Article and Find Full Text PDF

Targeting thrombin to screen safe thrombin inhibitors from natural plants and animals is a critical direction in anticoagulant drug development. This study aimed to screen thrombin inhibitors from the nonbloodsucking leech Whitmania pigra (WP) and elucidate the mechanism of anticoagulation through a "computation-guided experimentation" strategy. A peptide library was constructed from WP hydrolysates, and virtual screening was performed using molecular docking and dynamics simulations.

View Article and Find Full Text PDF

Introduction: Colonoscopy is often associated with significant patient pain and anxiety. Virtual reality (VR) technology has been widely used to alleviate pain and anxiety in patients undergoing invasive surgeries. However, there is a lack of reliable evidence supporting its effectiveness in reducing pain and anxiety in patients undergoing colonoscopy.

View Article and Find Full Text PDF

Technologies and emerging trends in wearable biosensing.

Prog Mol Biol Transl Sci

September 2025

School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:

This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.

View Article and Find Full Text PDF