Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics.
View Article and Find Full Text PDFNat Chem Biol
November 2020
The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether.
View Article and Find Full Text PDFBAX is a pro-apoptotic protein that transforms from a cytosolic monomer into a toxic oligomer that permeabilizes the mitochondrial outer membrane. How BAX monomers assemble into a higher-order conformation, and the structural determinants essential to membrane permeabilization, remain a mechanistic mystery. A key hurdle has been the inability to generate a homogeneous BAX oligomer (BAX) for analysis.
View Article and Find Full Text PDFThe clinical translation of cationic α-helical antimicrobial peptides (AMPs) has been hindered by structural instability, proteolytic degradation and in vivo toxicity from nonspecific membrane lysis. Although analyses of hydrophobic content and charge distribution have informed the design of synthetic AMPs with increased potency and reduced in vitro hemolysis, nonspecific membrane toxicity in vivo continues to impede AMP drug development. Here, we analyzed a 58-member library of stapled AMPs (StAMPs) based on magainin II and applied the insights from structure-function-toxicity measurements to devise an algorithm for the design of stable, protease-resistant, potent and nontoxic StAMP prototypes.
View Article and Find Full Text PDFFunctional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments.
View Article and Find Full Text PDFNucleic Acids Res
March 2017
Aberrant DNA methylation is a hallmark of various human disorders, indicating that the spatial and temporal regulation of methylation readers and modifiers is imperative for development and differentiation. In particular, the cross-regulation between 5-methylcytosine binders (MBD) and modifiers (Tet) has not been investigated. Here, we show that binding of Mecp2 and Mbd2 to DNA protects 5-methylcytosine from Tet1-mediated oxidation.
View Article and Find Full Text PDFMethods Mol Biol
January 2018
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues.
View Article and Find Full Text PDFG-protein-coupled receptors are eukaryotic membrane proteins with broad biological and pharmacological relevance. Like all membrane-embedded proteins, their location and orientation are influenced by lipids, which can also impact protein function via specific interactions. Extensive simulations totaling 0.
View Article and Find Full Text PDFThe nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells.
View Article and Find Full Text PDFRNF is a redox-driven ion (Na(+) and in one case possibly H(+)) transporter present in many prokaryotes. It has been proposed that RNF performs a variety of reactions in different organisms, delivering low-potential reducing equivalents for specific cellular processes. RNF shares strong homology with the Na(+)-pumping respiratory enzyme Na(+)-NQR, although there are significant differences in subunit and redox cofactor composition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
The delivery of free molecules into the cytoplasm and nucleus by using arginine-rich cell-penetrating peptides (CPPs) has been limited to small cargoes, while large cargoes such as proteins are taken up and trapped in endocytic vesicles. Based on recent work, in which we showed that the transduction efficiency of arginine-rich CPPs can be greatly enhanced by cyclization, the aim was to use cyclic CPPs to transport full-length proteins, in this study green fluorescent protein (GFP), into the cytosol of living cells. Cyclic and linear CPP-GFP conjugates were obtained by using azido-functionalized CPPs and an alkyne-functionalized GFP.
View Article and Find Full Text PDFProliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker.
View Article and Find Full Text PDFJ Am Chem Soc
December 2014
Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of computational results and in vitro and live-cell experimental evidence reveals an efficient energy-independent translocation mechanism for arginine-rich molecules.
View Article and Find Full Text PDFRibonuclease H2 plays an essential role for genome stability as it removes ribonucleotides misincorporated into genomic DNA by replicative polymerases and resolves RNA/DNA hybrids. Biallelic mutations in the genes encoding the three RNase H2 subunits cause Aicardi-Goutières syndrome (AGS), an early-onset inflammatory encephalopathy that phenotypically overlaps with the autoimmune disorder systemic lupus erythematosus. Here we studied the intracellular dynamics of RNase H2 in living cells during DNA replication and in response to DNA damage using confocal time-lapse imaging and fluorescence cross-correlation spectroscopy.
View Article and Find Full Text PDFProtein-protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein-protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites.
View Article and Find Full Text PDFCube octameric silsesquioxanes (COSS) are among the smallest nanoparticles known to date with a diameter of only 0.7 nm. We describe a COSS-based delivery system which allows for the drug targeting in human cells.
View Article and Find Full Text PDFThe replication of the genome is a spatio-temporally highly organized process. Yet, its flexibility throughout development suggests that this process is not genetically regulated. However, the mechanisms and chromatin modifications controlling replication timing are still unclear.
View Article and Find Full Text PDFIn addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2007
The recombinant HIV-1 Tat protein contains a small region corresponding to residues (47)YGRKKRRQRR(57)R, which is capable of translocating cargoes of different molecular sizes, such as proteins, DNA, RNA, or drugs, across the cell membrane in an apparently energy-independent manner. The pathway that these peptides follow for entry into the cell has been the subject of strong controversy for the last decade. This peptide is highly basic and hydrophilic.
View Article and Find Full Text PDFCell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway.
View Article and Find Full Text PDFThe authors propose a new approach to understand the electrostatic surface contributions to the interactions of large but finite periodic distributions of charges. They present a simple method to derive and interpret the surface contribution to any electrostatic field produced by a periodic distribution of charges. They discuss the physical and mathematical interpretations of this term.
View Article and Find Full Text PDFMolecular dynamics simulations of lipids bilayers have reported that the average area per lipid increases with the size of the simulated unit cell under constant temperature, pressure, and number of molecules. Here we show that the cause of this finite size effect are artifacts associated with the heat bath coupling. This can be corrected by coupling individually each degree of freedom to the heat bath, instead of coupling globally the system.
View Article and Find Full Text PDF