A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rosiglitazone Prevents Autophagy by Regulating Nrf2-Antioxidant Response Element in a Rat Model of Lithium-pilocarpine-induced Status Epilepticus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Status epilepticus (SE) leads to irreversible neuronal damage and consists of a complex pathogenesis that involves oxidative stress and subsequent autophagy. Rosiglitazone has recently been considered as a potential neuroprotective factor in epilepsy because of its antioxidative function. The aim of this study was to assess the effects of rosiglitazone in SE rat models and investigate whether its mechanisms of action involve autophagy via the antioxidant factor, nuclear factor erythroid 2-related factor 2 (Nrf2). The male Sprague-Dawley rats (200-220 g) were used to establish lithium-pilocarpine-induced SE model. We found that rosiglitazone markedly improved neuronal survival at 24-h post-SE as indicated via Hematoxylin-Eosin and Nissl staining. Furthermore, along with a reduction in reactive oxygen species, rosiglitazone pretreatment enhanced the antioxidative activity of superoxide dismutase and the expression level of Nrf2, as detected via chemical assay kits and Western blotting, respectively. In addition, the microtubule-associated protein light chain 3II (LC3II)/LC3I ratio was increased and peaked at 24 h after SE, whereas p62 mRNA levels were sharply elevated at 72 h after SE, both SE-induced increases of which were reversed via rosiglitazone pretreatment. To further test our hypothesis of the key role of Nrf2 in this process, small-interfering RNA for Nrf2 (siNrf2) was then transfected into SE rats to knockdown Nrf2 expression. We found that siNrf2 partially blocked the above effects of rosiglitazone on autophagy-related proteins in SE rats. Taken together, our findings suggest that rosiglitazone attenuates oxidative-stress-induced autophagy via increasing Nrf2 in SE rats and may be used as a promising therapeutic strategy for SE treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.10.026DOI Listing

Publication Analysis

Top Keywords

rosiglitazone
8
status epilepticus
8
effects rosiglitazone
8
rosiglitazone pretreatment
8
nrf2
6
rosiglitazone prevents
4
autophagy
4
prevents autophagy
4
autophagy regulating
4
regulating nrf2-antioxidant
4

Similar Publications