98%
921
2 minutes
20
A critical lack of personal protective equipment has occurred during the COVID-19 pandemic. Polylactic acid (PLA), a polyester made from renewable natural resources, can be exploited for 3D printing of protective face masks using the Fused Deposition Modelling technique. Since the possible high porosity of this material raised questions regarding its suitability for protection against viruses, we have investigated its microstructure using scanning electron microscopy and aerosol generator and photometer certified as the test system according to the standards EN 143 and EN 149. Moreover, the efficiency of decontaminating PLA surfaces by conventional chemical disinfectants including 96% ethanol, 70% isopropanol, and a commercial disinfectant containing 0.85% sodium hypochlorite has been determined. We confirmed that the structure of PLA protective masks is compact and can be considered a sufficient barrier protection against particles of a size corresponding to microorganisms including viruses. Complete decontamination of PLA surfaces from externally applied , , and SARS-CoV-2 was achieved using all disinfectants tested, and human adenovirus was completely inactivated by sodium hypochlorite-containing disinfectant. Natural contamination of PLA masks worn by test persons was decontaminated easily and efficiently by ethanol. No disinfectant caused major changes to the PLA surface properties, and the pore size did not change despite severe mechanical damage of the surface. Therefore, PLA may be regarded as a suitable material for 3D printing of protective masks during the current or future pandemic crises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603793 | PMC |
http://dx.doi.org/10.7717/peerj.10259 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFChem Asian J
September 2025
Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India.
Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Bisected and core-fucosylated N-glycans represent a distinct class of complex biomolecules that are implicated in diverse biological and pathological processes. The structural complexity and synthetic challenges of these glycans hinder comprehensive understanding of their biological functions due to limited access to well-defined samples. Despite advances in the complex N-glycan synthesis, the efficient preparation of bisected and core-fucosylated asymmetric N-glycans with various branches and terminal epitopes remains an unmet challenge.
View Article and Find Full Text PDFBMC Geriatr
September 2025
Population Health Research Group, Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran.
Background: The world's elderly population is increasing. Due to the increase in musculoskeletal disorders in this group and the multifactorial nature of this disease, this study investigated the effective factors in preventing musculoskeletal pain in the elderly living in nursing homes, based on the Health Belief Model.
Methods: A cross-sectional design was conducted with a random sample of 311 older adult nursing home residents in the Kahrizak nursing home, whose aims were to identify the determinants influencing musculoskeletal pain prevention practices (intake of vitamin D, stress management, and correct body posture).
Biosens Bioelectron
December 2025
Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium. Electronic address:
Microneedle-based electrochemical sensors (MES) are developed as interface systems between the sensor and interstitial fluid (ISF), allowing the transdermal monitoring of analytes with clinical value. However, the widespread adoption of MES platforms to enable advances in devices for health monitoring is still a challenge. Herein, we propose an affordable and versatile wearable patch based on 3D-printed microneedle arrays to facilitate the development of electrochemical sensors.
View Article and Find Full Text PDF