Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bone repair using BMP-2 is a promising therapeutic approach in clinical practices, however, high dosages required to be effective pose issues of cost and safety. The present study explores the potential of low dose BMP-2 treatment via tissue engineering approach, which amalgamates 3-D macro/microporous-nanofibrous bacterial cellulose (mNBC) scaffolds and low dose BMP-2 primed murine mesenchymal stem cells (C3H10T1/2 cells). Initial studies on cell-scaffold interaction using unprimed C3H10T1/2 cells confirmed that scaffolds provided a propitious environment for cell adhesion, growth, and infiltration, owing to its ECM-mimicking nano-micro-macro architecture. Osteogenic studies were conducted by preconditioning the cells with 50 ng/mL BMP-2 for 15 min, followed by culturing on mNBC scaffolds for up to three weeks. The results showed an early onset and significantly enhanced bone matrix secretion and maturation in the scaffolds seeded with BMP-2 primed cells compared to the unprimed ones. Moreover, mNBC scaffolds alone were able to facilitate the mineralization of cells to some extent. These findings suggest that, with the aid of 'osteoinduction' from low dose BMP-2 priming of stem cells and 'osteoconduction' from nano-macro/micro topography of mNBC scaffolds, a cost-effective bone tissue engineering strategy can be designed for quick and excellent in vivo osseointegration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.11.049DOI Listing

Publication Analysis

Top Keywords

mnbc scaffolds
16
stem cells
12
tissue engineering
12
low dose
12
dose bmp-2
12
3-d macro/microporous-nanofibrous
8
macro/microporous-nanofibrous bacterial
8
bacterial cellulose
8
scaffolds seeded
8
seeded bmp-2
8

Similar Publications

Bone repair using BMP-2 is a promising therapeutic approach in clinical practices, however, high dosages required to be effective pose issues of cost and safety. The present study explores the potential of low dose BMP-2 treatment via tissue engineering approach, which amalgamates 3-D macro/microporous-nanofibrous bacterial cellulose (mNBC) scaffolds and low dose BMP-2 primed murine mesenchymal stem cells (C3H10T1/2 cells). Initial studies on cell-scaffold interaction using unprimed C3H10T1/2 cells confirmed that scaffolds provided a propitious environment for cell adhesion, growth, and infiltration, owing to its ECM-mimicking nano-micro-macro architecture.

View Article and Find Full Text PDF