Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances.

MAGMA

Department of Health Technology, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10334-020-00894-wDOI Listing

Publication Analysis

Top Keywords

dynamic nuclear
8
nuclear polarization
8
advances dissolution-dnp
8
hyperpolarization dissolution
4
dissolution dynamic
4
polarization technological
4
technological methodological
4
methodological advances
4
dissolution-dnp method
4
method boost
4

Similar Publications

Temporal transcriptomics reveal crucial networks underlying jasmonate-mediated diurnal floret opening and closure in rice.

Sci China Life Sci

September 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

Structural basis of adenosine 2A receptor-balanced signaling activation relies on allosterically mediated structural dynamics.

Cell Chem Biol

September 2025

iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio

Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF